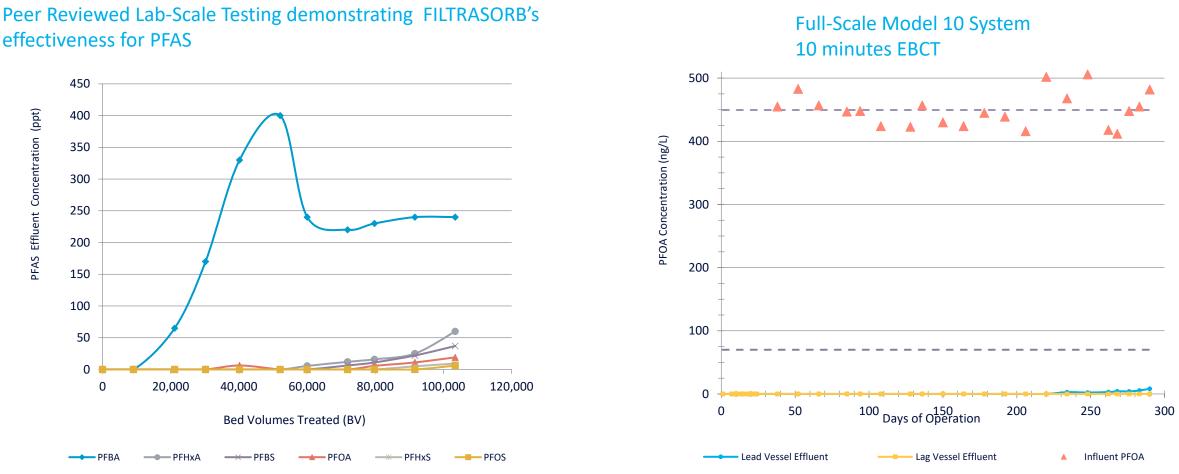
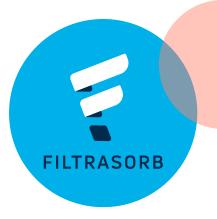


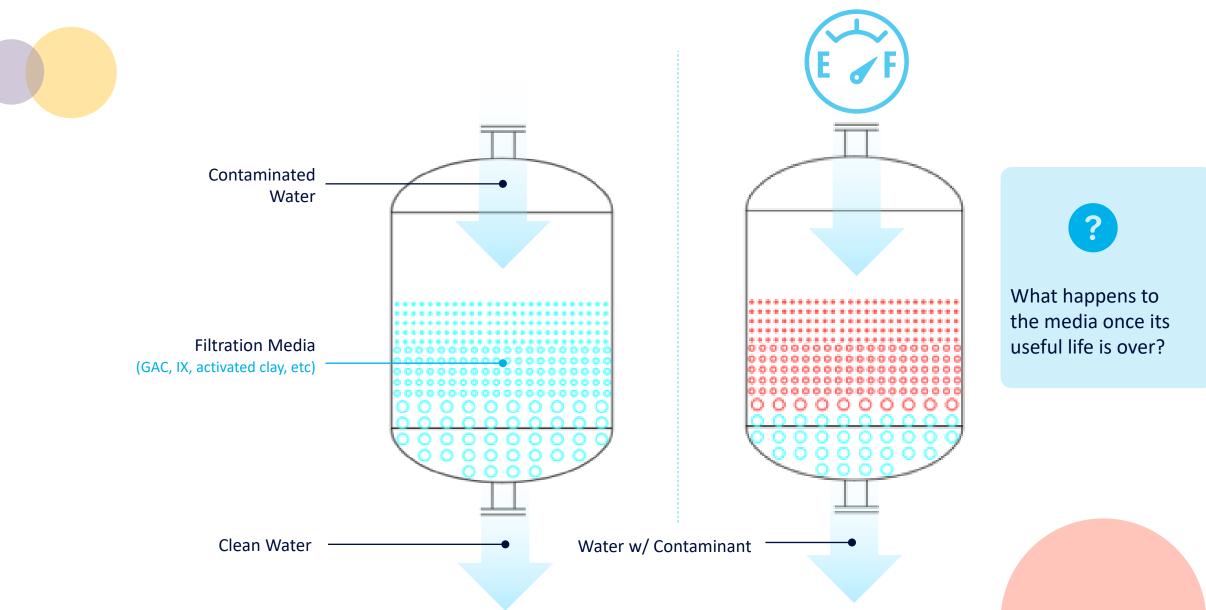
Thermal Destruction of PFAS during full-scale reactivation of PFAS-laden granular activated carbon


Leila Munla, Ph.D. Applications Engineer Drinking Water Solutions

Rebecca DiStefano Sr. Applications Engineer Industrial Business Unit


Adam Redding, PhD Technical Director Drinking Water Solutions

John Matthis Business Development Manager Global Business Development



Calgon Carbon's FILTRASORB[®] product is proven and capable of meeting non-detect for a range of PFAS

Water treatment removes contaminants from water

Reactivation

How Our Products Help Customers and Society

- No landfill liabilities
- <u>Certified</u> destruction of the adsorbed materials (which may be classified as hazardous (CERCLA or RCRA)) – NO LIABILITY
- 80% Reduction in CO₂ vs. the production of virgin carbon
- Lower <u>cost</u> than incineration
- More sustainable
 - Cost
 - Resources (energy, material)
 - Environmental
- Can be reused for multiple applications

Reactivation

Global Reactivation Capacity

UNITED STATES

- 5 Reactivation sites
 - 2 RCRA facilities
 - 3 Potable facilities
 - 4 sites are CERCLA Approved

UNITED KINGDOM

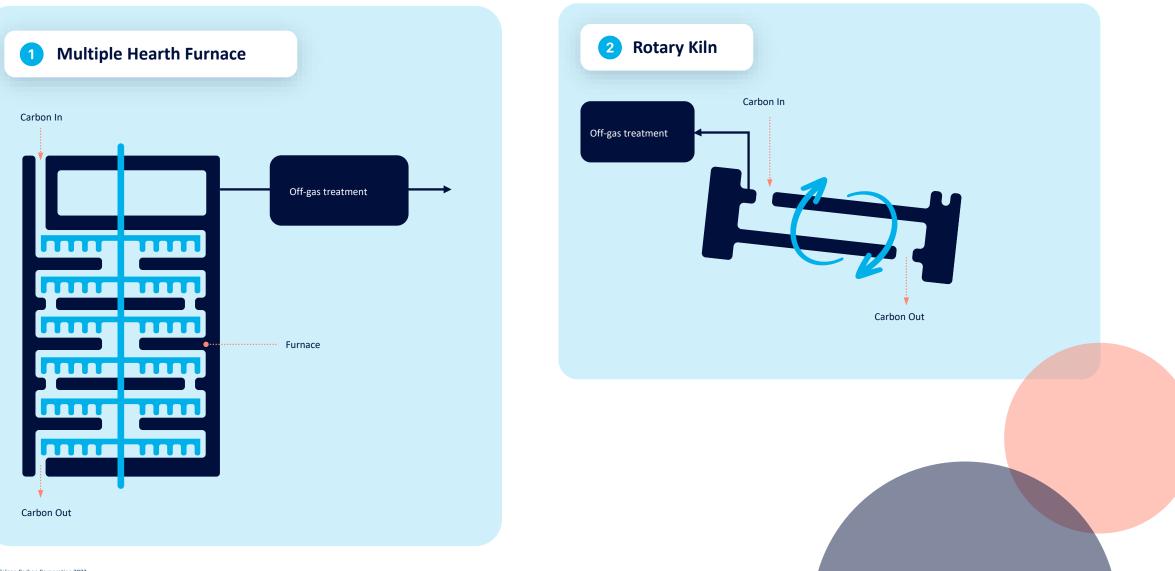
• 2 Reactivation sites

BELGIUM

• World's largest reactivation site

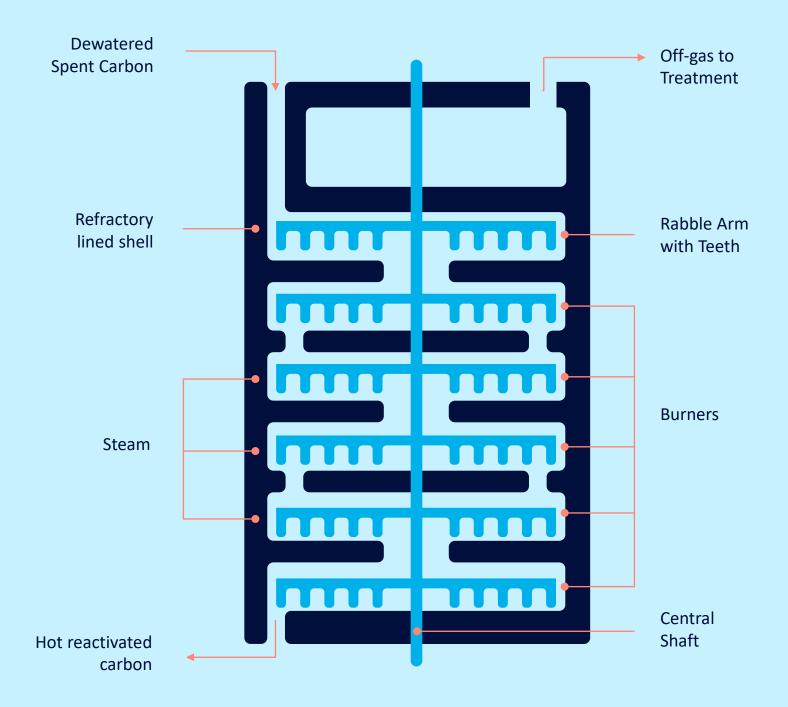
CHINA

• 2 Reactivation sites


Calgon Carbon reactivates over 254 million pounds of activated carbon every year!

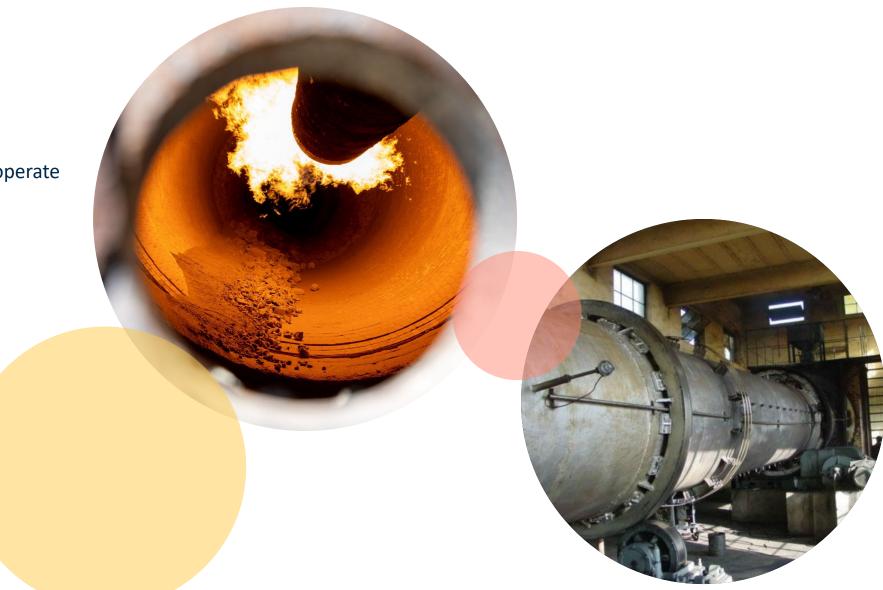
Over 30 years of reactivation experience globally!

Reactivation Systems


There are two primary types of reactivation systems:

7

Reactivation equipment and conditions are CRITICAL


- *Temperature*
- o Time

Reactivation Systems

Rotary Kiln

- Batch operation
- Simplest type of furnace to operate
- Easier product segregation

Reactivation Chemistry

Low temperature pre-treatment

• Drying of water at 100°C

Physical processes and reactions

• Thermal Devolatilization and Desorption at 100-250°C

High temperature carbon condensation reactions

 High temperature pyrolysis/ calcination chemistry at 200-750°C

High temperature carbon gas/solid reactions

 Chemical reactions for Carbon Gasification with water vapor, carbon dioxide, or oxygen at 800-1000°C

Multi-hearth furnace

Carbon Acceptance Testing Objectives

Carbon Acceptance testing includes a series of evaluations to confirm a spent carbon can be <u>effectively</u> and <u>safely</u> reactivated.

Each project is thoroughly evaluated to ensure it meets CCC's requirements for:

Safety/Toxicity Regulatory Compliance Protection of:

- The Environment
- Plant Personnel
- Process Equipment
- Quality of React Product

Robust Carbon Acceptance Testing is conducted before GAC is approved for reactivation

- Apparent Density (AD)
- pH
- Ignitability
- Reaction with water
 % Moisture
- Radiation Screening

Nature of spent carbon: % Halides (Cl, F, Br) % Sulfur

Inorganics

Quality of Reactivated Product

Liquid phase applications only

ICP Metals including lead, mercury % hex chrome

BTU content (RCRA-hazardous only)

GAC Reactivation is a mature, sustainable, destructive end-oflife for PFAS

Technology	Matrix	Level of Tech	Destructive	Recyclability
Landfill	Solids	Mature	No	No
Incineration	Solids & Liquids	Mature	Yes	No
SCWO	Solids & Liquids	Pilot/Lab Scale	Yes	No
Plasma	Solids & Liquids	Pilot/Lab Scale	Yes	No
GAC Reactivation	Spent GAC	Mature	Yes	Yes

GAC Reactivation is the only technology that allows reuse of the media!

Reactivation is a Unique Process

United States Code of Federal Regulations, 40 C.R.F. 260.10 defines an **incinerator** as "any enclosed device that: Uses controlled flame combustion and neither meets the criteria for classification as a boiler, sludge dryer, or carbon regeneration unit, nor is listed as an industrial furnace; or meets the definition of infrared incinerator or plasma arc incinerator."

A carbon regeneration unit is defined as "any enclosed thermal treatment device used to regenerate spent activated carbon" (Hazardous Waste Management, **2022**)

https://www.calgoncarbon.com/app/uploads/PFAS-Reactivation-Memo-06022020.pdf

Reactivation ≠ Incineration Reactivation ≠ Regeneration

DOD mandate that restricts incineration of PFAS laden material does not apply to reactivation since it is classed separately, even though it is incorrectly called "regeneration" in federal code

Regeneration vs. Reactivation for GAC

Reactivation

Reactivation is a high-temperature thermal process that removes and destroys contaminants from the carbon's pore structure allowing the product to be reused fully.

Regeneration

Regeneration utilizes steam, solvents, or a low temperature process to remove a portion of the adsorbed species, allowing the product to be reused. Typically results in a waste stream as this is not a destructive process.

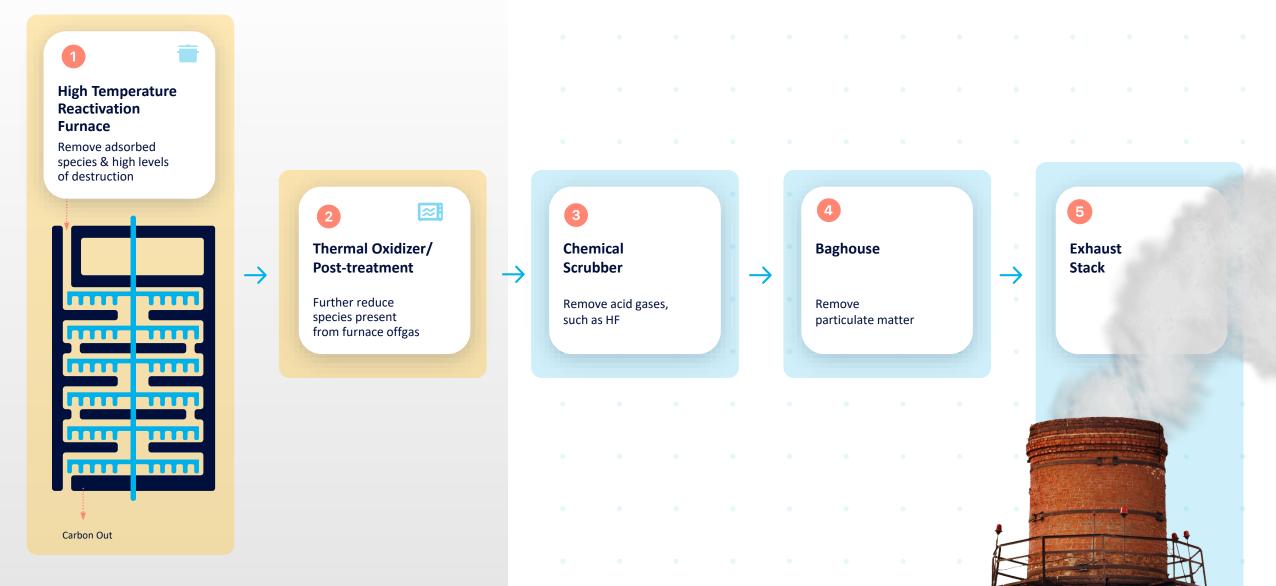
Will often only remove ~70% or less of contaminants.

Reactivation's conditions are unique for destruction of PFAS vs. Incineration

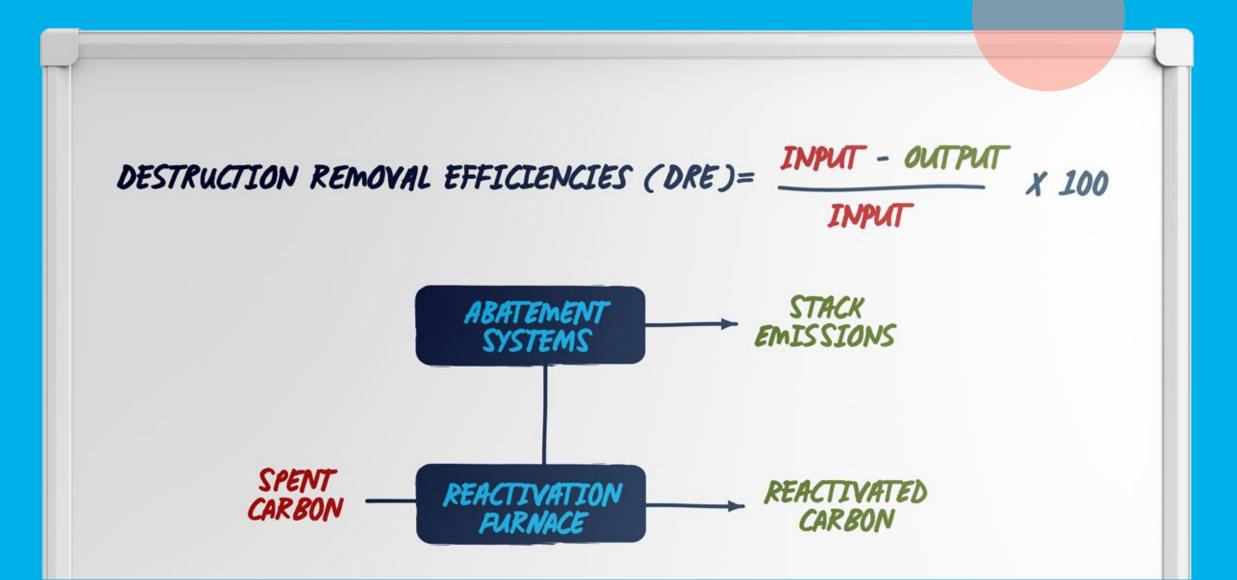
Can reuse carbon

Reactivation

Condition	Parameter
Residence Time	1.5 h (5400 second)
Temperature	700-950 Cº
Catalytic Effect	GAC



Carbon is destroyed


Incineration

Condition	Parameter
Residence Time	1-3 seconds
Temperature	1,000 – 1,440 Cº
Catalytic Effect	No catalytic effect

Calgon's Reactivation is a unique process with multiple destructive technologies

Destruction Removal Efficiency Calculations

Recent Peer Reviewed Journal Article Demonstrating Calgon Carbon's Reactivation Effectiveness

REMEDIATIO	N	REMEDIATION	Volume 32,	Issue 4
			Fall 2022 Pages 231-2	20
THE JOURNAL OF ENVIRONMENTAL CLEANUP COSTS, TECHNOLOGIES, & TECH	INIQUES		Fages 231-2	.50
RESEARCH ARTICLE 🗇 Open Access 💿 🖲	A			
RESEARCH ARTICLE Diopen Access O U O	8			
	-	WILEY Merch size Ann		
Thermal destruction of PFAS du	iring full-scale reactivation of	WILEY Marked States		
Thermal destruction of PFAS du	uring full-scale reactivation of carbon	e	000	0
Thermal destruction of PFAS du PFAS-laden granular activated of	Iring full-scale reactivation of Carbon Imna, Adam M. Redding, John Matthis	WILEY CONTROL OF CONTR	o Related	i) Information
Thermal destruction of PFAS du PFAS-laden granular activated of Rebecca DiStefano 🖾, Tony Feliciano, Richard A. M	Iring full-scale reactivation of Carbon Imna, Adam M. Redding, John Matthis	e	Related	

Abstract

Granular activated carbon (GAC) is the most widely used and well-established treatment technology for the removal of per and polyfluoroalkyl substances (PFAS) contaminants from drinking water and wastewater. After the GAC has reached the end of its useful service life and become "spent carbon," it is common practice in industry to thermally treat it in a process known as reactivation. The reactivation process volatilizes and destroys adsorbed contaminants at high temperatures and restores the GAC to a nearvirgin state so that it can be reused. Since the advent of PFAS regulatory actions, questions have arisen about the effectiveness of the reactivation process for the destruction of PFAS given their high thermal stability and the lack of documented study on this new topic. In light of this, a thorough program of testing was carried out at a fullscale GAC reactivation facility during the reactivation of a load of GAC known to contain adsorbed PFAS. The facility employs a multihearth Herreschoff furnace and a

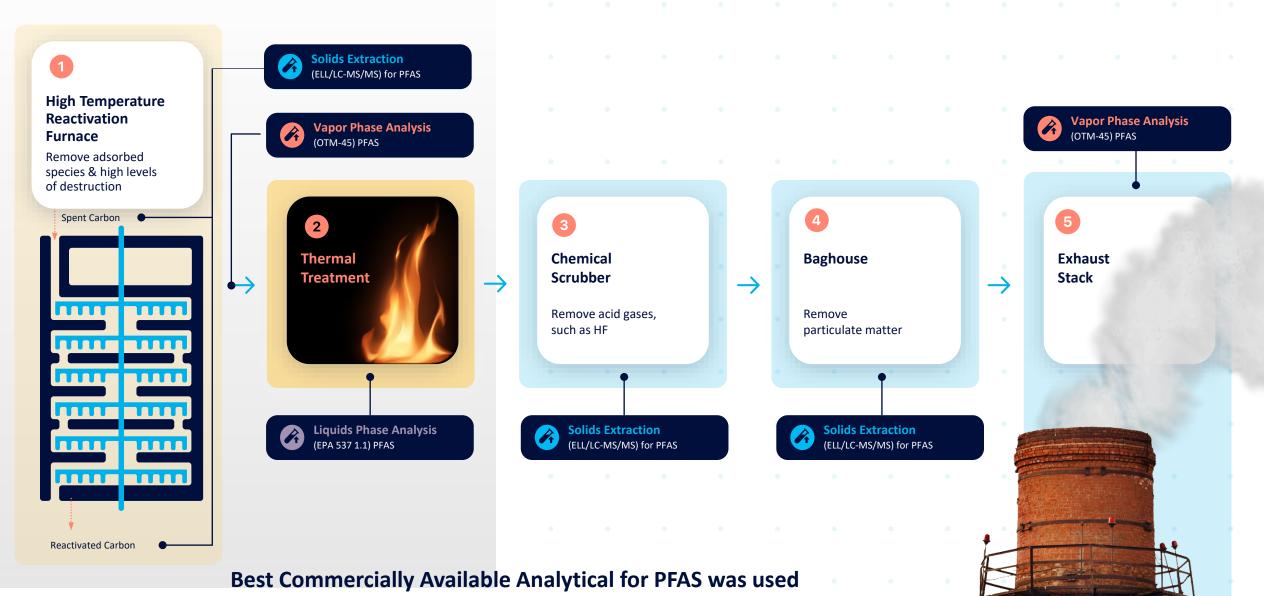
ubstances (PFAS)

Lawrence P. Burkhard, Lauren K. Votava

Environmental Toxicology and Chemistry

Editor's perspective—Just how large is the PFAS problem?

John A. Simon


Remediation Journal

PFAS Legislation Tommy Holmes, Nate Norris

Journal AWWA

Published Open Access 13-Sept-2022

Calgon's Reactivation is a Unique Process with Multiple Destructive Technologies


Destruction Removal Efficiency

	Total PFAS (lb/hr)	Incremental Destruction Removal Efficiency (DRE)	Overall DRE
Spent Carbon (29 compound list) ¹	0.748		
Furnace off-gas (36 compound list) ²	8.41 × 10 ⁻⁵	99.989%	
Stack emissions (36 compound list) ²	4.88 × 10 ⁻⁵	42.024%	99.993%

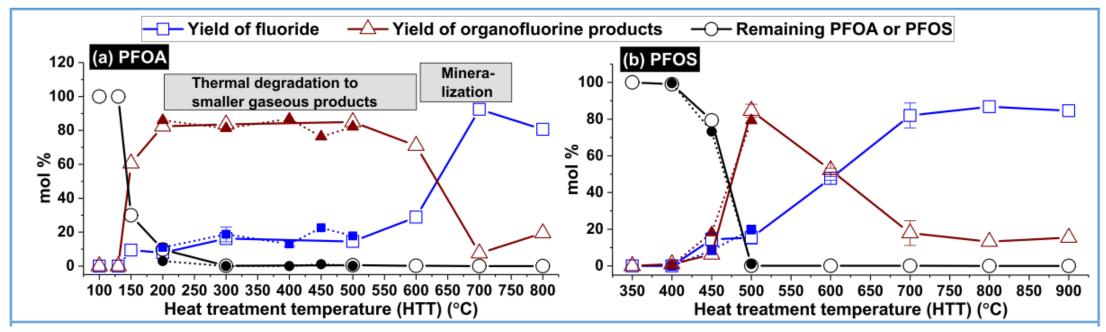
Reactivation Demonstrated >99.99% Destruction for Total PFAS

Calgon's Furnace & Abatement System PFAS DREs

DRE PFAS: >99.9%

Calgon's Reactivation effectively removes PFAS below detection limits!

		Spent Carbor	n		Reactivated C	Carbon	
		Composite Sa	ample for Each Emis	sions Test	Compos	ite Sample for Eac	h Emissions Test
	NG/G	TEST 1	TEST 2	TEST 3	TEST 1	TEST 2	TEST 3
PERFLUOROBUTANOIC ACID	PFBA	6300	6700	4700	<1.9	<1.9	<1.9
PERFLUOROPENTANOIC ACID	PFPEA	2600	2500	1500	<0.58	<0.58	<0.58
PERFLUOROHEXANOIC ACID	PFHXA	3700	2900	1600	<0.58	<0.58	<0.58
PERFLUOROHEPTANOIC ACID	PFHPA	1600	1300	620	<0.58	<0.58	<0.58
PERFLUOROOCTANOIC ACID	PFOA	18000	14000	5800	<0.58	<0.58	<0.58
PERFLUORONONANOIC ACID	PFNA	88	72	53	<0.58	<0.58	<0.58
PERFLUORODECANOIC ACID	PFDA	71	51	21	<0.58	<0.58	<0.58
PERFLUOROUNDECANOIC ACID	PFUNDA	45	24	24	<0.58	<0.58	<0.58
PERFLUORODODECANOIC ACID	PFDODA	<9.7	<9.1	<9.6	<0.58	<0.58	<0.58
PERFLUOROTRIDECANOIC ACID	PFTRIDA	59	30	28	<0.58	<0.58	<0.58
PERFLUOROTETRADECANOIC ACID	PFTETDA	<9.7	<9.1	<9.6	<0.58	<0.58	<0.58
PERFLUOROBUTANESULFONIC ACID	PFBS	11000	8200	6300	<1.9	<1.9	<1.9
PERFLUOROPENTANESULFONIC ACID	PFPES	6700	4700	1200	<0.58	<0.58	<0.58
PERFLUOROHEXANESULFONIC ACID	PFHXS	33000	22000	5900	<0.58	<0.58	<0.58
PERFLUOROHEPTANESULFONIC ACID	PFHPS	5100	3100	810	<0.58	<0.58	<0.58
PERFLUOROOCTANESULFONIC ACID	PFOS	16000	12000	6700	<0.58	<0.58	<0.58
PERFLUORONONANESULFONIC ACID	PFNS	40	27	9.9	<0.58	<0.58	<0.58
PERFLUORODECANESULFONIC ACID	PFDS	180	110	37	<0.58	<0.58	<0.58
PERFLUORODODECANESULFONIC ACID	PFDOS	<32	<30	<32	<1.9	<1.9	<1.9
PERFLUOROOCTANESULFONAMIDE	PFOSA	340	340	380	<0.58	<0.58	<0.58
NMEFOSAA	NMEFOSA	720	550	560	<1.9	<1.9	<1.9
NETFOSAA	NETFOSAA	610	520	440	<1.9	<1.9	<1.9
HFPODA	GENX	6500	40000	55000	<1.9	<1.9	<1.9
4:2 FLUOROTELOMER SULFONIC ACID	4:2 FTS	<32	<30	<32	<1.9	<1.9	<1.9
6:2 FLUOROTELOMER SULFONIC ACID	6:2 FTS	290	110	800	<1.9	<1.9	<1.9
8:2 FLUOROTELOMER SULFONIC ACID	8:2 FTS	<48	<46	<48	<2.9	<2.9	<2.9
10:2 FTS	10:2 FTS	<32	<30	<32	<1.9	<1.9	<1.9
PERFLUOROHEXADECANOIC ACID		<9.7	<9.1	<9.6	<0.58	<0.58	<0.58
PERFLUOROOCTADECANOIC ACID		<9.7	<9.1	<9.6	2.2 / <0.57	<0.58	<0.58
SUM 29 PFAS COMPOUNDS:		112943	119234	92483	2.2	0	0


Fluoride Measurements

	Total PFAS (lb/hr)	Calculated Total Fluoride from PFAS (lb/hr)	Measured Total Fluoride (lb/hr)
Spent Carbon	0.748	0.396	9.05
Reactivated Carbon	0.000	0.000	2.61
Furnace off-gas	8.41E-05	5.47E-05	2.95
Abatement Dust	0.000	0.000	1.26

- Mass balance at 61.4% on total fluoride
- Fluoride is very reactive with furnace linings, process equipment, EVERYTHING!
- Indicates mineralization of PFAS to fluoride

Fluoride Mass Balances are very difficult to achieve in full-scale, realworld conditions.

Lab Scale Work Supports Higher Mineralization

Xiao, F., et al. Thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon. Environmental Science & Technology Letters, 2020, 7, 343-350.

- Shows PFAS remineralization during GAC reactivation at a lab scale
 - PFAS can be remineralized at lower temperatures
- Fluoride is very reactive with furnace linings, process equipment, EVERYTHING!
 - Fluoride balances easier to obtain and measure at lab scale

Conclusions & Key Findings

\checkmark

Calgon's Reactivation is a unique process that thermally removes PFAS and achieves high destruction in the reactivation furnace and our robust abatement systems

\checkmark

Reactivation is very different than Regeneration

Reactivation is very different than

Incineration

 \checkmark

<

Calgon Carbon's proprietary reactivation process and conditions achieved > 99.99% PFAS destruction for total PFAS

Calgon Carbon's proprietary reactivation process and conditions achieved > 99.999% destruction for PFAS with a current EPA Health Advisory Limit (PFOA, PFOS, GenX, PFBS)

High levels of fluoride generated support mineralization of these compounds

~

Reactivation is a safe, proven, simple, costeffective and fully commercial offering **~**

Reactivation is sustainable process that has 80% reduction in CO₂

Benefits of Reactivation for PFAS

- Disposal through reactivation is an accepted disposal method for other CERCLA sites.
- Reactivation maintains low O&M costs and keeps the source of supply flexible.
- IX Resin cannot be reactivated and must be disposed of through incineration or landfill.
- Sub-bituminous and other non bituminous GAC materials present a low yield through reactivation, meaning incineration and landfill are the only disposal options.
- The <u>liability</u> of PFAS disposal lies with the reactivation service supplier and not on the material generator.
- Reactivated GAC will <u>perform similar</u> as virgin GAC for several, if not all cycles.
- <u>Cost</u> of reactivated material is ~30% that of virgin material.

Thank you for your time. Questions?

Leila Munla, Ph.D. c. (760) 214-6319 Leila.Munla@Kuraray.com