Occurrence of Manganese in Drinking Water Systems in the USA and Pacific Northwest Patterns

Andy Eaton, PhD, BCES

Eaton Environmental Water Quality Consulting, LLC

South Pasadena, CA 91030

ade1014@gmail.com

Items to be Covered

- UCMR 4 national occurrence slicing and dicing from the National Contaminant Occurrence Database (NCOD)
- Pacific Northwest occurrence and potential issues a subset from NCOD and closer look at what's uploaded.
- Conclusions

UCMR Sampling Requirements

- All Entry Point to the Distribution System Samples (no source)
- GW 2 samples, 5 to 7 months apart
 - Assumption is that GW doesn't change rapidly
- SW, MX, GU 4 samples, 3 months apart
 Should capture some flow/seasonal variation/reservoir turnover

American Water Works Association

Pacific Northwest Section

What Can We Learn About DW Occurrence From UCMR Mn Data?

- First comprehensive study of Mn in US finished drinking water
- Mn occurrence by system size (<10K vs > 10K)
- Mn occurrence for GW systems vs SW systems
- Geographic distribution of Mn occurrence (regional issue vs. national)
- Impact of multiple samples at a single entry point or PWS (variability over time and impact on compliance)
- Frequency of occurrence above different levels of interest

(20 ppb, 50 ppb, 80 ppb, 120 ppb, 300 ppb)

UCMR 4 Sampling was Extensive ~38,000 Data Points Representing ~5,000 Systems

Note: The data are based on zip-code, so the larger the zip-code, the less geographic precision

Maximum Mn by Source Water Type Where Mn > 120 μ g/L (Health Canada Guideline) or Current EPA HRL of 300 μ g/L

Maximum Mn for Groundwater Source Systems Where Mn > 50 μ g/L (Current SMCL) or 80 (WHO Guideline)

Maximum Mn for Surface Water Source Systems Where Mn > 50 μg/L (Current SMCL) or 80 (WHO Guideline)

Max Mn by Source Water Type Where Mn > 20 μg/L (Aesthetic Guideline Level)

Heat Map of Maximum Mn for PWSID > 20 μ g/L

slides

% of UCMR 4 Systems Exceeding Various Potential Standards Based on Final UCMR 4 Data

		% of PWS with <u>Maximum</u> Mn exceeding value					
Standard	Source of Standard	All Systems	GW Systems				
20 µg/L	Health Canada's Aesthetic Objective	25.9%	32.3% (NIRS 27%)				
50 μg/L	EPA SMCL	12.9%	17.8% (NIRS 16%)				
80 µg/L	WHO Provisional GV	8.8%	12.8% (NIRS 12%)				
120 µg/L	Health Canada's MAC	6.1%	9.0% (NIRS 7.3%)				
300 μg/L	EPA HRL	2.1%	3.1% (NIRS 3.2%)				

Note: EPA often uses 2% occurrence by PWS as a threshold for potential regulation.

American Water Works Association Pacific Northwest Section The NIRS study was a 900 system GW only survey in the 1990s and results are very similar to UCMR GW!

If We Look At Source Type And System Size In Detail, We Learn More

	S-GW	S-GW-	S-GW-	L-GW-	S-SW-	S-SW	L-SW-		All S-	All S-	All-L
	NIRS	UCMR3	UCMR4	UCMR4	UCMR3	UCMR4	UCMR4		UCMR3	UCMR4	UCMR4
Count	992	447	548	2240	248	258	2475	Count	672	799	4237
>20	27.0%	42.2%	26.6%	33.8%	16.5%	16.7%	14.8%	>20	33.8%	24.0%	26.3%
>50	16.0%	23.3%	12.8%	19.2%	4.8%	6.2%	5.3%	>50	17.3%	11.0%	13.3%
>80	11.6%	15.9%	9.5%	13.8%	4.0%	4.3%	2.8%	>80	12.1%	8.0%	9.0%
>120	7.3%	11.4%	6.8%	9.7%	2.0%	3.9%	1.7%	>120	8.3%	5.9%	6.1%
>300	3.2%	4.0%	2.7%	3.3%	0.4%	1.2%	0.6%	>300	2.8%	2.1%	2.1%

• GW systems are more likely to have high Mn than SW systems.

- Although UCMR 3 data show frequent high occurrence in small systems, UCMR 4 suggests occurrence is similar in small and large systems. More data are needed!
- More than 25% of systems have maximum levels above Health Canada's aesthetic standard of 20 $\mu g/L.$

American Water Works Association Pacific Northwest Section

Trends Don't Change Substantially As The Number Of Systems With Results Increases

Threshold	% of Large Systems Exceeding					
Last Sample Date	Dec 2018	Dec 2019	2021			
Samples	10,204	25,906	34,151			
Number of systems	1763	3693	4220			
> 120 µg/L	5.1%	5.4%	6.1%			
> 20 µg/L	23.1%	24.7%	26.1%			

American Water Works Association

Pacific Northwest Section

This suggests that the UCMR program may not need to sample all **large** systems to assess national occurrence frequencies!

However, Multiple Sample Events Increases The Frequency Of Exceedances

Threshold	% of Systems Exceeding									
Source		GW			SW					
Event	SE1 SE2 Any SE			SE1	SE2	SE3	SE4	Any SE		
Systems	2735	2666	2777	2667	2646	2647	2566	2721		
> 120 µg/L	6.9%	6.7%	9.0%	0.8%	0.6%	0.3%	0.4%	1.8%		
> 20 µg/L	27.2%	27.5%	32.2%	6.3%	5.9%	5.1%	5.3%	14.8%		

GW systems may change wells over time

SW systems could see lake turnover or changes in treatment over time

American Water Works Association Pacific Northwest Section

Probability Plots for National Mn Occurrence by Source Type and Sample Event

- GW systems in general have much higher levels of Mn than SW systems.
- There is no real difference between distributions for individual sample events, but the more samples you take, the greater the likelihood of finding higher values.

Comparing OR-WA Data to National Data: PNWS GW Systems Have Potential Mn Issues

% of Systems Exceeding Specified Level								
Criteria	US	OR-WA	US	OR-WA				

	GW	GW	SW	SW
% >20	32%	43%	15%	20%
% > 50	18%	30%	5%	6%
% >80	13%	20%	3%	4%
% > 120	9%	10%	2%	1%

Only OR-WA systems are shown but Idaho has issues also.

A Few Systems Appear to Have Significant Variability Over Time Even in Groundwater, But...

- Plot shows variation in results between sample events for groundwater systems in Oregon and Washington.
- In general results between sample events are very close, but once in a while there appear to be major differences- most likely a data entry error. The devil is always in the details!

American Water Works Association Pacific Northwest Section

PNW Surface Water Systems Show Substantial Variability Over Time

- Although there are <30 SW systems which have maximum values exceeding 10 µg/L, variation in those may be substantial, and one system (not shown due to scale) even exceeds the Canadian guideline.
- Many sample points may exceed the 20 µg/L aesthetic guideline at different sample periods.

Conclusions

- Elevated Mn is not only a national issue, but also an issue for Oregon and Washington systems, particularly if we focus on the aesthetic guideline level of 20 μg/L.
- The number of small (<10K) systems sampled in the UCMR program does not adequately characterize Mn occurrence in small systems.
- Results from fewer systems overall appear to be adequate to assess occurrence on a nationwide basis for large systems.
- There can be significant variability over time. On a national basis, a single sample event is insufficient to determine potential exceedances at a given PWS. If you want to control Mn entering the distribution system, you should sample frequently.

