

 \bigcirc

MODIFIED TRACER TESTING METHODOLOGY FOR LONG DETENTION TIMES

PNWS-AWWA Section Conference Kennewick, WA May 5, 2023

Andrew Nishihara, P.E. Surbhi Malik

AGENDA

- 1. What is and why do Tracer Testing?
- 2. Determining Hydraulic Efficiency
- 3. Factors that determine Disinfection Efficiency
- 4. Tracer Testing Parameters and Tracer Testing Methods
- 5. Modified Tracer Methods
- 6. Questions

What is Tracer Testing?

- Tracking the path of the tracer in the water
- Add a known quantity of tracer (or chemical) in the water channel and monitor the tracer residual downstream
- Water channel to be representative of a measurable contact time between the point of residual monitoring or disinfectant application
- Constant, uninterrupted flow through process segment of the plant being tested is imperative
- Determine system's contact time (T₁₀) or tracer residual at a particular flow rate
 - T₁₀ is time taken for 10% of the tracer to pass through the sampling point
- Chemical used CaCl₃, NaF, H₂SiF₆

 \sim

≥

 \geq

≥

z

Why do we do Tracer Testing?

- 1. <u>Process Design Validation</u>
 - Validate basis of disinfection design
 - Determine level of inactivation achieved via disinfection
 - Understand the impact of flow characteristics in clearwell, pipeline, post disinfection

2. <u>Regulatory Compliance ~ SWTR Disinfection Requirements</u>

- Prevent consumer exposure to pathogenic organisms in drinking water
- Achieve minimum 3-log reduction of Giardia, 4-log reduction of viruses, and 2-log reduction of Cryptosporidium
- Reduction occurs through various stages of physical and chemical treatments at WTP
- Water quality parameters like pH and temperature also impact disinfection efficiency

Determining Hydraulic Efficiency

Determine hydraulic efficiency / baffling factor of the plant processes:

Hydraulic Efficiency or Baffling Factor

 $= \frac{\text{Time 10\% of Tracer Passed}}{\text{Theoretical Time 100\% of Tracer Passed (HRT)}}$ $= T_{10} / T_{\text{th}}$

Where T_{th} = Volume of wetwell / Flowrate

Higher Baffling Factor or Hydraulic Efficiency → Good circulation within water channel → Little to no short circuiting

EPA SWTR Disinfection Benchmark: Baffling Classifications

Baffling Condition	T10/T	Baffling Description
Unbaffled (mixed flow)	0.1	None, agitated basin, very low length to width ratio, high inlet and outlet flow velocities. Can be approximately achieved in flash mix tank
Poor	0.3	Single or multiple unbaffled inlets and outlets, no intra-basin baffles
Average	0.5	Baffled inlet or outlet with some intra-basin baffles
Superior	0.7	Perforated inlet baffle, serpentine or perforated intra-basin baffles, outlet weir or perforated launders
Perfect (plug flow)	1.0	Very high length to width ratio (pipeline flow), perforated inlet, outlet, and intra-basin baffles

Factors that determine Disinfection Efficiency

- 1. Disinfectant dose
- 2. Residence time
 - CT = disinfectant dose (mg/L) x contact time (min)
- 3. pH and temperature
 - Disinfection kinetics increase linearly with increase in temperature
 - At lower temperatures, disinfection is slower and higher doses are needed
 - Lower pH facilitates the formation of free chlorine residual, improving disinfection efficiency
- 4. Physical process features like wetwell geometry, baffles
 - Wetwell geometry can create dead zones and short-circuiting
 - This can be prevented by installing baffles that ensure proper dispersion through the chamber
- 5. Background substances
 - Organic matter, hardness, metals, etc.
 - Can inactivate the disinfectant by reacting and neutralizing it
 - Can also create a protective barrier around the microorganisms (color, UVT)

STANTEC | PNWS-AWWA 2023

Tracer Testing Parameters

- 1. Flow Rate
 - 5% standard deviation during testing
 - EPA allowance ~ 91% of Q_{max}
- 2. Water Elevation
- 3. Tank or chamber geometry
- 4. Duration of Tracer Test 2 to 3 HRTs
- 5. Tracer Chemical and Injection
 - Should not compete with background concentrations in water
 - Must not endanger water quality
 - May already being added or readily available, safe to handle, easy to measure
 - Injection at a point of good mixing that mimics actual WTP conditions
- 6. Sample Location and Frequency
 - Monitor end point of chosen segment
 - Easy access to flow stream without needing to pump sample
 - Grab samples with hand-held sensors, online measurement, or sent to lab

 \sim

Methods of Tracer Testing

PHYSICAL / EMPI	DESKTOP / COMPUTER MODELLING	
SLUG DOSE	CONSTANT CONCENTRATION	CFD MODELLING
Simple bulk injection of tracer	 Constant rate injection 	Computation Fluid Dynamics
Large instantaneous dose	 Step-dose of known concentration until desired 	 Analyze fluid flow through numerical analysis
 Intensive mixing required 	concentration is achieved at monitoring location	 User input – plant process
 Mass balance to determine total recovery at monitoring location 	 Feed equipment required to 	characteristics, assumptions
 Longer sampling period may be required 	dosing	Virtual particle tracking allows simulation of residence time distribution for each clearwell
 Typically used if injecting chemical that isn't used in treatment process 	 Advantageous it using a chemical that is already being fed 	contiguration and flow rate condition

 \bigcirc

Limitation of Methods

Desktop methods

- Washington and Colorado have compared published and anticipated values versus empirical methods
- Noted that values could show variations or negative bias

CFD modelling

Powerful tool but based on assumptions, inputs and model complexity; doesn't account for model errors

"All models are wrong, some are useful" - George Box

Physical/Empirical methods

- Feasibility of conducting test for 2-3 hydraulic retention times
- Tracer recovery and analytical limitations
- Risk of operator error

* 2017 – Washington's Tracer Study Project, WSDOH and G&O, PNWS-AWWA Tri-Cities Conference

* Colorado guidance - https://cdphe.colorado.gov/swtr

Modified Tracer Methods

Is running a tracer test for 2-3 HRT feasible?

Is running a tracer test for the full duration until full tracer decay is achieved feasible?

Example: WTP with <u>1-mgd</u> max plant capacity and a <u>1-million-gallon</u> clearwell (or reservoir). To conduct a conventional tracer test to achieve total recovery or decay of tracer element over 2-3 HRTs (standard), the testing duration would be <u>3 days!</u>

Modified Tracer Methods

- Modified Techniques using Conventional Tracer Methods
 - 1. <u>Slug-dose but terminate when 10% of tracer has been recovered</u>
 - Very difficult to confirm spiking and total tracer recovery, not recommended
 - 2. Constant Concentration Method but terminate early at T_{10}
 - Should be considered if conditions can be closely monitored
- Verify dosing mass / concentration immediately downstream of injection

Modified - California Department of Public Health

- 2008 Schott G. Clearwell Tracer Study Results, Five Points. Mendicino District
 - Long HRTs, not feasible to run 2-3 HRTs
 - Modified Step-Dose
 - Good quality assurance / quality control
 - Operated test until slightly over 10% of tracer was recovered
 - Allowed higher tracer concentration to be used (3.0 to 6.7 mg/L fluoride)

2019. Schott. AWWA Sacramento Presentation

Modified Tracer Method - Canada

- CFD Model predicted
 0.75
- Tracer testing calculated >0.8
- Possible issues with QA/QC
- Limitations of free chlorine with decay

З

202

S - A W W A

≥

z

۵

 \odot

ANTE

S

Modified Tracer Test conducted at Lewiston, ID

CW Volume: 100x45x6.5 = 29,250 CF = 218,790 gallons

	PARAMETER	TRACER TESTING CONDITIONS
	Tracer Test Methodology	Test 1: Fluoride Step-Feed Test 2: Fluoride Decay
	Plant Flow Rate	4,200 gpm (6 mgd)
	Clearwell Level	85% Full (measured in the pump wetwell)
	Tracer Chemical	Fluoride
17	Duration of tracer test	4 hours total
LCAR NGE- NG L.	Sample Location	Finished Water Pump Discharge
10,15	Sample Frequency	15-min frequency prior to study 1-min sample collection during study

Modified Tracer Test conducted at Lewiston, ID

Fluoride Lead Step Feed Baffling Factor = 0.62 Fluoride Lag Step Feed Baffling Factor = 0.59

 \bigcirc

RECAP

- Tracer testing is very valuable to confirm design assumptions
- Historical estimated methods can be optimistic
- CFD modeling can give good starting point
- Modified methods available for challenging situations

QUESTIONS?

anishihara@stantec.com

Surbhi.Malik@stantec.com