Month Date

## Making Conventional Treatment Cutting Edge Technology



**Process Optimization Using Advanced Data Analytics** 





**Damon Roth** 

206.749.2232 DRoth1@BrwnCald.com

#### Acknowledgements

- Erin Mackey, Chris Wanner, Kim Gupta, and Kelly Kimball
- PWB's Operations and Water Quality teams
- Tom Carrol, Riley Middlebrook
- Dave Hardy



### Agenda

- What is a Smart Utility?
- Why Smart Utility?
- Using dashboards to optimize how you run your plant
- What's next
- Questions

# What is a Smart Utility?

- Compiles existing data, analyzes it, and filters information based on individual user needs
- Allows utilities to adapt to changes in technology, growth, and regulations



## Why Smart Utility?

#### Benefits

- Optimization people, processes, systems
- Technology alignment 1011111010100101011100001
- Realtime or near-realtime decision making
- Organizational alignment and interdepartmental communication
- Efficient report generation

#### **Case Study - Key Issues at PWB**





# Why Smart Utility and Dashboards?

- 49+ disconnected system
- Segmented business process data
- NO data management standards & practices
- 500+ reports produced across platforms
- Software functionality not maximized
- HIGH maintenance costs
- Current disparate systems are obstacles to efficient data driven decisions and reporting

Data System Fragmentation

## Connecting applications together with context creates a Smart Utility



### **Dashboards for Better Plant Operation**

### Why use dashboards?

- Separate data visualization/analysis from control and acquisition
- Expand access to data without expanding access to controls
- Reduce cognitive load



Source: Brischke et al, 2010

#### Why not just add SCADA screens?

- Modern data visualization programs (e.g., Power BI) have several advantages over traditional SCADA HMIs
  - Low barrier to entry for customization and expansion
  - Provides rich visualization of enterprise data
  - Enables self-serve data exploration
  - Brings silo'ed data together to create new insight



#### **Examples of dashboarding concepts**

- 1. Minimize cognitive load
- 2. Time series data trending
- 3. Advanced data trending
- 4. Correlation analysis
- 5. Automate process calculations

- 6. Automate monitoring and reporting
- 7. Predictive analytics
- 8. Compliance verification and reporting
- 9. Extending beyond treatment

#### Minimize cognitive load

- Utilize 'gauges' to provide quick visualization of key performance indicators
- Presents data from SCADA in an form that can be rapidly interpreted



#### **Time series data trending**

- Provide snapshot of process performance prior to shift changes
- Allows data exploration outside of SCADA environment



#### **Advanced data trending**

 Comparing across multiple time periods identifies if trends are typical or anomalous



#### **Correlation analysis**

- Visualize correlations between data
- Expands analysis beyond single data sources
  - SCADA
  - LIMS
  - CMMS



#### Automate process calculations

 Transform/ manipulate data in nearreal time to provide process insight



#### Automate monitoring and reporting

- Provide snapshot of process performance prior to shift changes
- Allows data exploration outside of SCADA environment



#### **Predictive analytics**

 Utilize analytics to forecast operations based on historical observations



#### **Compliance verification and reporting**

- Provide near real-time visualization of compliance data
- Automate reporting



#### **Extending beyond treatment**

 Data from any of the utility's data acquisition systems can be visualized and analyzed



#### **Lessons Learned for Implementing Solutions**

Putting it all together

#### **Implementation Approaches**

Two distinct approaches to implementation:

#### **Bottom up**

Develop use cases, tools, technology and solutions as you go – focus is on the use cases (good ideas and problems to be solved)



#### **Top Down**

Roadmap Document – start with vision, identify and prioritize UC deployment, correlate to technology needs and gaps, create implementation plan with schedule and budget

#### Bringing a utility together through digital transformation



Phased Approach

- ✓ greater levels of adoption
- ✓ acceptance across the organization!

### **Final thoughts**

- You need to be thoughtful and strategic for success
  - Think about the end game from the beginning
  - There is not unlimited \$\$, the roadmap helps you zero in on what you need
  - Smart Utility means integration of systems, optimization of resources (including people)
- Benefits of Smart Utility Dashboards (rather than programming in SCADA)
  - Screening criteria
  - Avoid additional programming, data export, and manipulation
    - Right format, right math, right quick!
  - Visual flexibility
  - Predictive analytics





## Thank you!

• Questions?

## Damon Roth, PE, BCEE

Brown and Caldwell Droth1@BrwnCald.com 206.749.2232

Brown AND Caldwell

