Ozone Equipment Replacement: How to Increase Resiliency of Your Ozone System Amidst Supply Chain Issues

PNWS AWWA Conference 2023 | Kennewick, WA Kim Ervin, PE Global Principal, Drinking Water and Reuse

Agenda – 3 Ozone Replacement/ Upgrade Case Studies

Seattle Tolt WTF (in construction)

Tacoma Green River FF (planning)

Medford Duff WTP (completed 2022)

Ozone Replacement Considerations

- How much of the existing system needs to be replaced or refurbished?
- How is the existing system performing?
- Can the system size be optimize based on historical operating data?
- What new ozone technologies or sub systems are better suited for replacement/retrofits?
- Can the existing plant operate without ozone temporarily?
- What are the constructability and logistic issues to transition from the old to the new system?
- How should the new equipment be procured, e.g. sole source or competitively bid or a mix?

Tacoma Water Ozone Replacement

Evaluation and Planning

System Summary Tacoma Water Green River Ozone Facility

Criteria	Value
WTP capacity	150 mgd
Ozone location and purpose	Pre-ozone; T&O control
Ozone system capacity	2800 lbs/day (1 duty + 1 standby)
Installation date	2007
Reason for replacement	Power supply unit (PSU) failure
Manufacturer	Ozonia (now Veolia)

Ozone System Schematic

Recommended Improvements

Equipment	Condition	Recommended Improvements
LOX Tank		 Adjust economizer setpoint to work with current operating conditions Route economizer relief piping upstream of vaporizer Replace insulation of LOX piping and valves
Vaporizers	1	
Nitrogen Boost System		 Evaluate options (1) new compressor or (2) liquid N2
Ozone Generators and Power Supply Units	0	Generators in good conditionReplace outdated PSUs including PLCs and HMIs
Cooling Water System		 Open loop: replace basket strainers with flushable screens
Sidestream Injectors		 Update operation of small injectors
Off-Gas Destruct	*	
Instrumentation		Replace all obsolete instruments and analyzers
Control System		Replace PLCs and update programming if neededConsider automated dose based on ozone residual

Ozone Dose Evaluation

Recommended Ozone to DOC ratios:

- O₃:DOC ≥ 1 for T&O control
- $-0.5 \le O_3$:DOC ≤ 1 to improve biofiltration by making NOM assimilable

Low Ozone dose oxidizes algal cells and releases intracellular T&O

Citation: Wert et al. (2014)

Treatment Effectiveness

11

Treatment Effectiveness: 2019 Challenges

12

2022 recorded even higher Raw Water TOC than 2019 but higher ozone doses control T&O compounds

Generator Capacity: Future Impacts

Nitrogen Boost System Options Evaluation Compressed Air vs. Liquid Nitrogen

 Existing scroll compressors have experienced several failures and downtime. This limits ozone capacity to 50%.

©Jacobs 2023

Nitrogen Boost

 Both capital and operating costs favor a compressed air system for this application

25 year Life Cycle Cost (LCC) Analysis	Compressor Skid	Liquid N ₂
Operations (Electrical and Chemical)	\$12,000	\$190,000
Maintenance	\$25,000	\$2,000
Capital Cost ¹	\$34,000	\$146,000
25 year Net Present Value ² w/ Inflation ³	\$911,000	\$4,736,000

^{1.} Initial capital investment and necessary replacement at end of lifetime (assumed 15 years for the compressor)

^{2.} Assumed a nominal discount rate of 3.0% to calculate Net Present Value

^{3.} Assumed an inflation rate of 3.5%

Summary

- Evaluate the system treatment performance and future ozone demand changes as part of the system sizing
- Consider equipment alternatives to maintenance-heavy sub-systems

Seattle Tolt WTP Ozone Replacement

In progress to complete summer 2023

System Summary Seattle Public Utilities Tolt Water Treatment Facility

Criteria	Value
WTP capacity	120 mgd
Ozone location and purpose	Pre-ozone; T&O control
Ozone system capacity	4766 lbs/day (2 duty + 1 standby)
Installation date	2001
Reason for replacement	Generator failure from internal corrosion and power surge
Manufacturer	PCIWedeco (now Xylem)

Ozone System Background

Recommended Improvements

Equipment	Condition	Recommended Improvements
LOX Tank		
Vaporizers		
Nitrogen Boost System		
Ozone Generators and Power Supply Units	0	Replace 1 generator and PSU
Cooling Water System		 Upgrade to run closed loop cooling as duty- standby to 1 generator or duty to 2 different generators
Fine bubble injection	-	
Ozone Contactor		
Off-Gas Destruct	*	
Instrumentation		Replace dewpoint analyzers
Control System	<u> </u>	 Update SCADA control to accommodate new ozone generation and more automated control

Design Challenge – SCADA System Integration

- Current remote manual control due to limitations on gas valve adjustments – adjust gas concentration instead.
- Results in operating at low gas concentrations (typically 5 -6%)
- New system designed with different valves in full auto to operate at 9%
- Can use the existing generators (if needed) to supplement the capacity

LOX Savings by Operating at Higher Ozone Gas Concentration

Design Challenge – Cooling Water Supply

- Original system was open loop which contributed to the corrosion issues
- Installed closed loop system a few years ago but did not include flexibility to operate 2 generators at the same time – would have to operate in series
- New generator has different flow and temperature constraints
- Reconfiguring the cooling water system to dedicate one cooling water skid to one generator and also allow duty standby for each generator

Revised Cooling Water Pipe Design Before and After

Summary

- Evaluate the system performance for optimization/cost saving opportunities that may help pay for the system replacement
- Review system functionality and reliability

Medford Water Ozone Replacement Completed Summer 2022

System Summary Medford Water Duff Water Treatment Plant

Criteria	Value
WTP capacity	65 mgd
Ozone location and purpose	Pre-ozone; T&O control
Ozone system capacity	1200 lbs/day (1 duty + 1 standby)
Installation date	2003
Reason for replacement	Generator damage due to internal corrosion
Manufacturer	PCIWedeco (now Xylem)

Ozone System Schematic

Treatment Goals and Optimization

Treatment Goals

Reduce in DBP precursors (natural organic matter (NOM) and TOC)

Protect against algae and algal toxins

Reduce operating costs

Recommended Improvements

Equipment	Condition	Recommended Improvements
LOX Tank		
Vaporizers		
Nitrogen Boost System	Ø	 Install dew point sensor and replace compressor skid
Ozone Generators and Power Supply Units	Ø	Replace generators and PSUs
Cooling Water System	Ø	Upgrade to closed-loop cooling system
SidestreamInjectors	<u> </u>	 Replacesidestreampumps
Ozone Contactor		
Off-Gas Destruct		Replace HMI screensIntegrate controls into master panelReplace catalyst media
Instrumentation		Replace all instruments and analyzers
Control System	lack	Replace master control back panel

Historical Ozone Generation

Ozone Generator Output Over Time

Operational Savings from equipment replacement

Parameter	Low Concentration	High Concentration
LOX Usage		
Avg Ozone Concentration	6%	12%
LOX Usage	450 tons / year	225 tons / year
Annual Cost	\$112,500 / year	\$56,250 / year
Power Usage		
Unit Power Consumption	3.9 kWh / lb O ³	4.7 kWh / lb O_3
Annual Consumption	210,600 kWh / year	253,800 kWh / year
Annual Cost	\$19,000 / year	\$23,000 / year
Total Estimated Savings		\$52,250/year

Evaluation Conditions

- 1. 300 ppd average ozone production
- 2. 180 days of operation/year
- 3. LOX cost \$250/ton
- 4. Power cost \$0.09/kWh

Oxygen System

LOX Tank and Vaporizers

Nitrogen Boost System

Ozone Generation

Ozone Injection and Destruct

- Upstream ozone ("Preozonation") to oxidize
 T&O compounds
- Sidestream ozone injection
 - -3 pumps (2 duty)
 - 3 injectors per train (6 total)
- Two contactors, 12.6 min contact time at 45 mgd
- Two destruct units (dutystandby)

Schedule

Taste and Odor

Lessons Learned and Recommendations

- Evaluate the performance of the existing ozone system for optimization and reliability opportunities
- 2. Verify the size of equipment needed for the next 20-25 years
- 3. Evaluate the condition of all components and categorize need
 - a. Replace now (poor condition and long lead time)
 - b. Replace when fails (short lead time and redundant unit(s) available)
 - c. Purchase shelf spares (frequently used parts or long lead time)
 - d. Component in good condition and expected to last 20+ years.
- 4. Develop an implementation plan to meet WTP operation needs
- 5. Develop a contingency plan

Acknowledgements Kim DeFolo, Tacoma Water Jim Nilson, Seattle Public Utilities Andy Huffman, Medford Water

