

Challenging today. Reinventing tomorrow.

Machine Learning in Water

Coagulation Optimization

Benedicte Diakubama

Background

- Machine Learning
- Coagulation

Case Studies

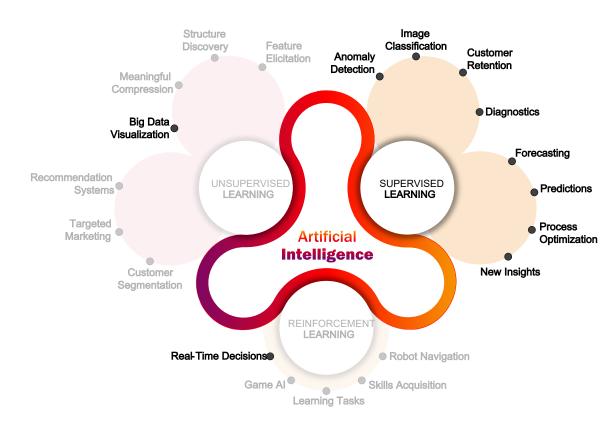
- Woodland Davis
- Melbourne Water

Lessons Learned

Background

Jacobs Challenging today. Reinventing tomorrow.

Machine Learning

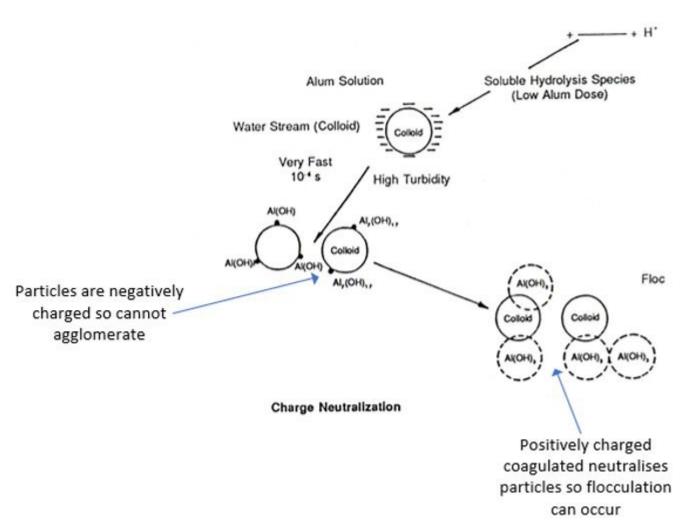


AI/ML Benefits

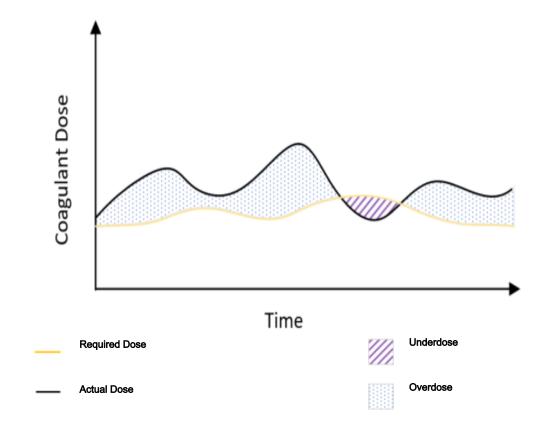
- Make our lives easier
 - Quickly analyze vast amount of data
 - Provide timely input for decisions
 - "Learn" and provide answers based on the historical data, not rules/equations/anecdote
- Identifying empirical relationships to deal with uncertainty and variability
- Fast calibration with online high frequency sensor data
- Quick adaptation to changes with the same resources
- 10-15% saving in coagulant dosing
- Increased confidence in operations- ability to see things ahead of time
- Saving in other chemicals, energy, and residuals

Treatment Process: Coagulation

- Chemical, positively charge metal salt
- Facilitates removal of:
 - Turbidity
 - Pathogens
 - Contaminants such as As & Fe
- Precipitation/Charge Neutralisation mechanisms
- Impacted by:
 - Temperature
 - Ionic Strength
 - Alkalinity
 - Suspended and Dissolved Solids
 - pH
 - Surface charge



Why Optimizing Coagulation with Machine Learning?



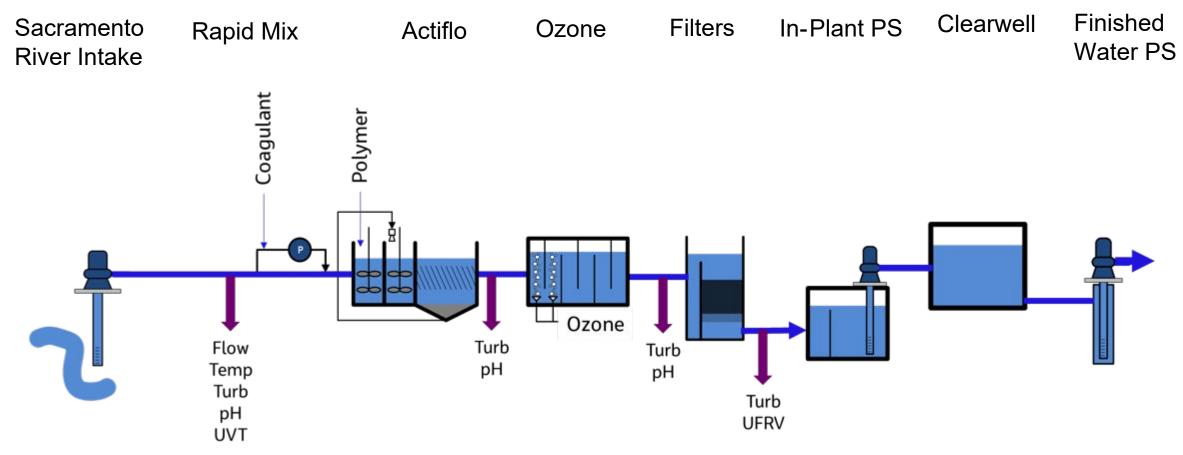
- There is no simple coagulation "equation"
- Long detention times make it difficult to react to changes
- Coagulation decisions are made based on experience, intuition, and trial and error
- Optimization can improve water quality, enhance efficiency, and lower costs

Machine Learning Goal: Optimize chemical doses and improve water quality

Case Study Woodland Davis

Regional Water Treatment Plant, California

Water Treatment Plant

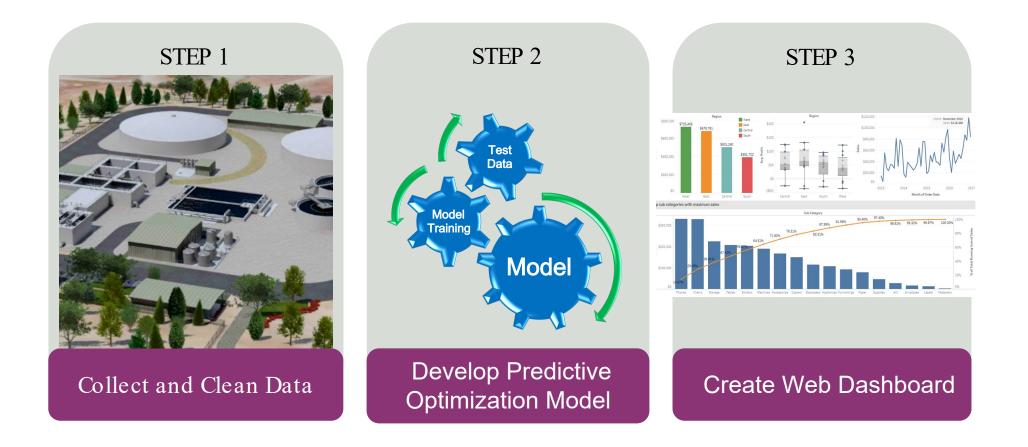


Woodland Davis Regional Water Treatment Plant

- 30 MGD plant surface water treatment plant
- Began operation in 2016
- Located in Davis California
- Treats Sacramento River Water
- Treatment Process:
 - Coagulation with Ferric
 Chloride and Polymer
 - Sand ballasted clarification (Actiflo)
 - Ozone with Biological Filtration

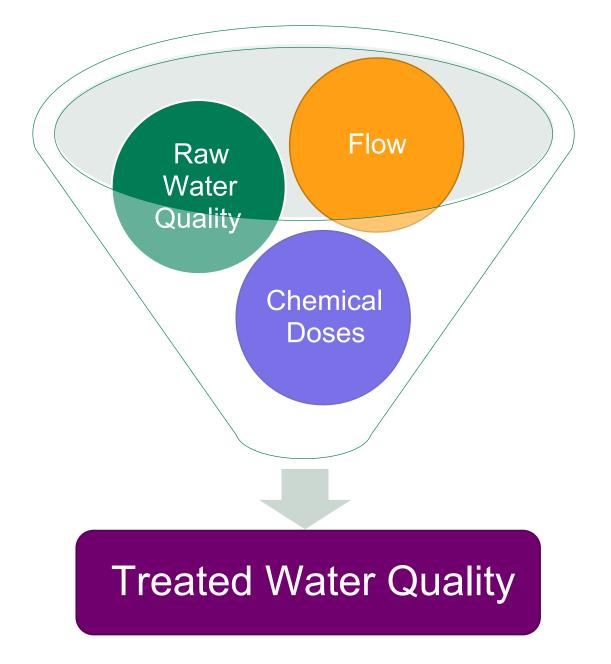
Machine Learning Goal: Optimize chemical doses and improve water quality

Implementation



Input Data

- Model was trained with 2017-2019 online SCADA data
 - Flow
 - Raw Water Quality
 - Turbidity
 - UVT
 - pH
 - Temperature
 - Alkalinity
 - Chemical Doses
 - Ferric
 - Polymer
- Online raw water organics data critical to coagulation prediction

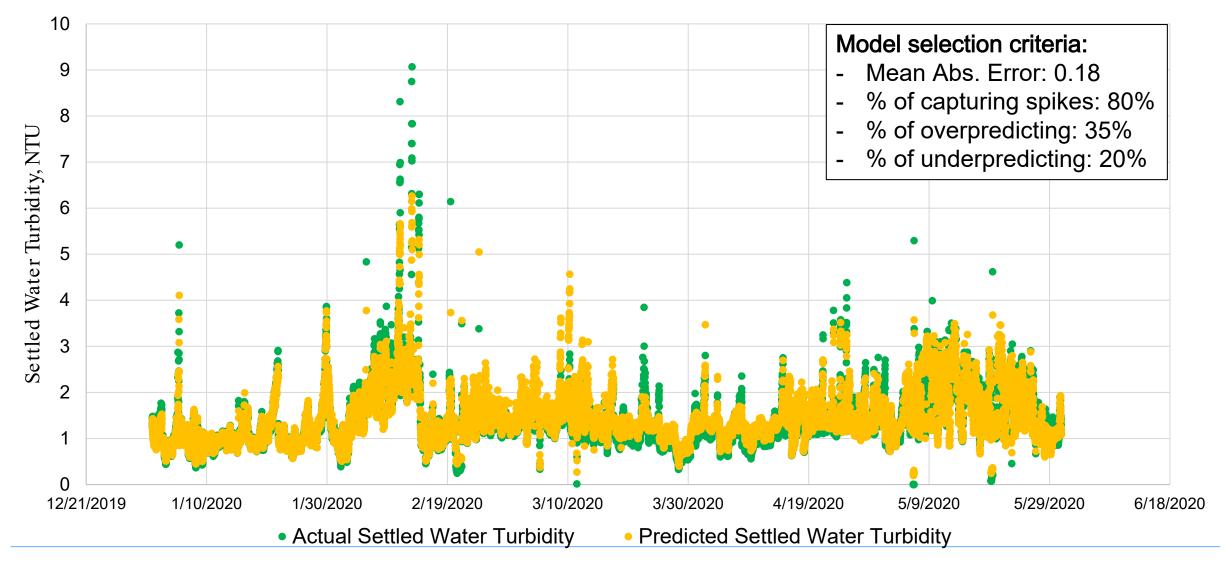


Predicted Optimization Summary

Month	Optimized Monthly Average Coagulant (mg/L)	Actual Monthly Average Coagulant (mg/L)	Cost Savings (\$/month)
1	22.6	25.1	\$4,400
2	26.2	28.5	\$3,800
3	19.0	20.8	\$3,600
4	20.0	22.0	\$4,500
5	18.6	20.8	\$6,000

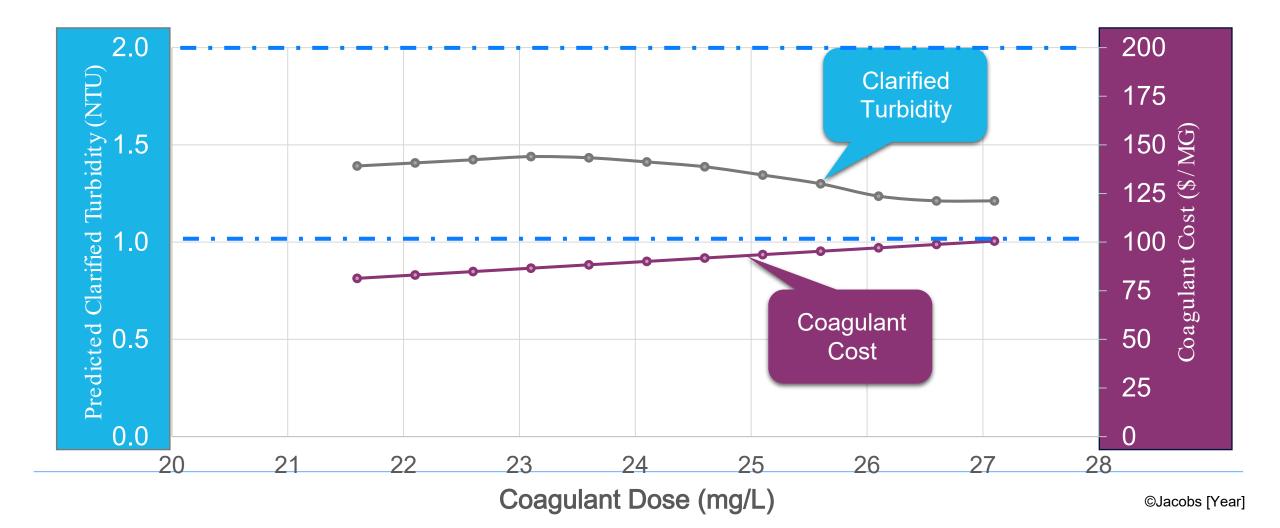
Average monthly cost savings9% Projected annual cost savings\$54,000-\$72,000

Trained Model Prediction

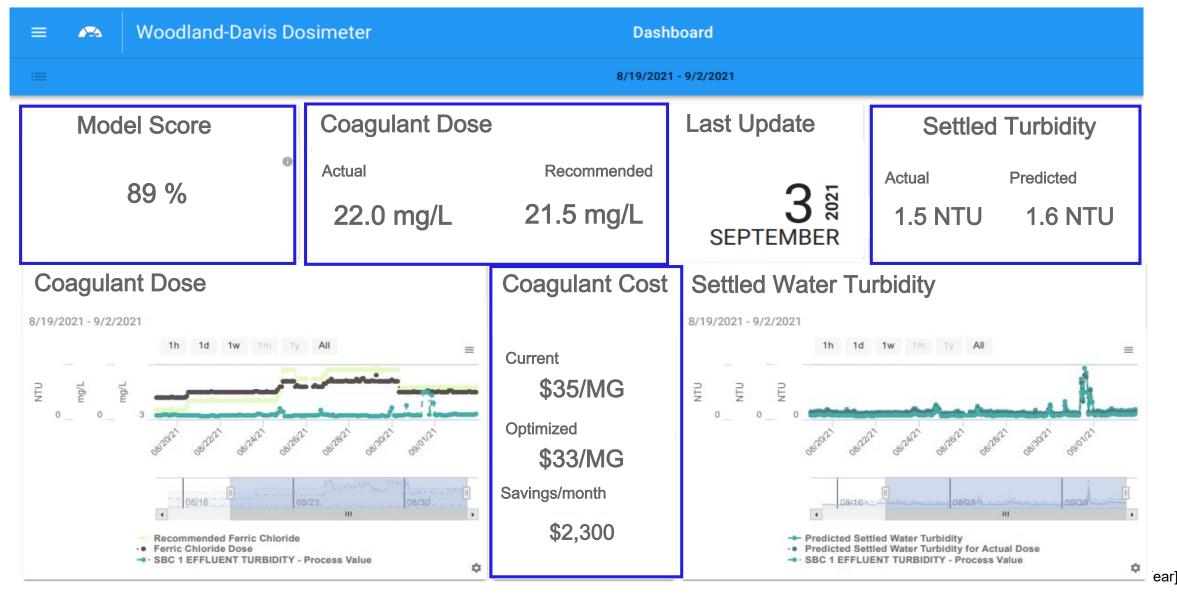


©Jacobs [Year]

Optimization Algorithm



Real-time information at your finger tips



Case Study Melbourne Water

• 600 MLD (160MGD)

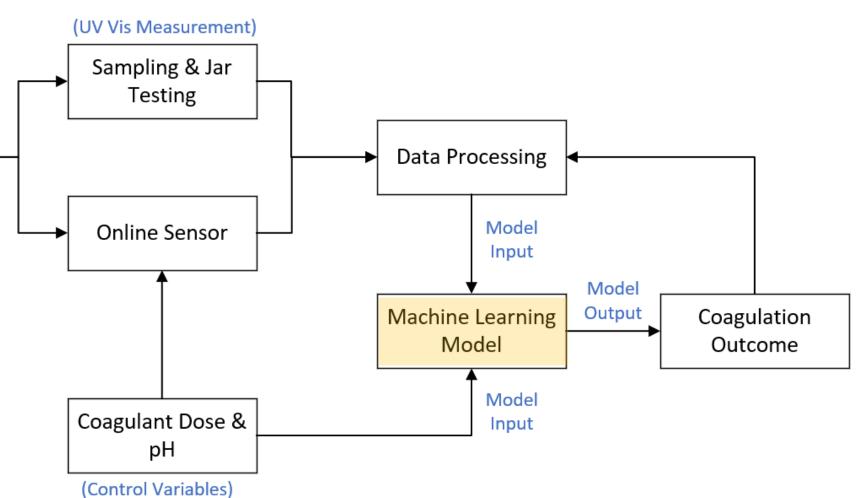
- Supplies ~30% of Melbourne's drinking water
- Treatment Processes: Conventional, clarification, dual media filtration
- Coagulant (alum) is flow
 paced

Birdseye view ofWinneke

CJacobs 2020

Model Development

(Measure UV Vis Spectra, turbidity, pH, alkalinity, temperature)



Optimization – **Results** (Cost Savings)

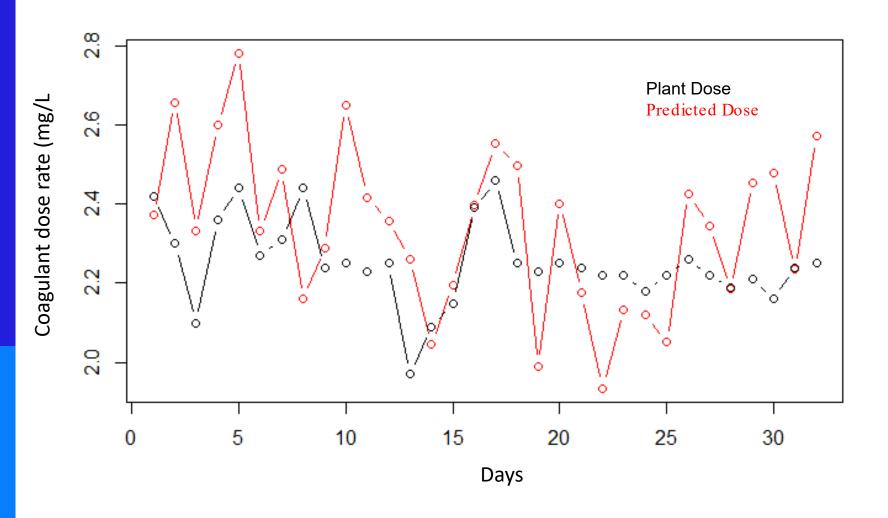
Day	Coagulant Dose Plant (mg/L as Al)	Coagulant Dose Model Optimized (mg/L)	% reduction
1	2.42	2.26	7%
2	2.3	2.20	5%
3	2.1	1.92	9%
4	2.36	2.14	9%
5	2.44	2.33	4%
6	2.27	1.99	12%
7	2.31	2.18	6%
8	2.44	2.26	8%
9	2.24	2.08	7%
10	2.25	2.16	4%
11	2.23	2.07	7%
12	2.25	2.07	8%
13	1.97	1.88	5%

Objective: Minimize coagulant use

Coagulant Model predicts 8%
 reduction in Alum dose

 Savings of \$160K AUD/year (\$97K USD)

Optimization – Results (Maximize DOC removal)



Objective: Maximize organic removal

- 10-20 percent increase in coagulant dose required
- Predicted Increase in Organic Removal: 5-10%

Lessons Learned

- Define a business use case at the beginning to frame the problem and guide the data analysis.
- Collaboration between subject matter experts and data scientists is key to understanding, analyzing, and modeling the data.
- SCADA data is generally easier to ingest for modeling; spreadsheet data can pose problems due to changes in formatting over time, hidden columns, and human error.

Copyright notice

Important

The material in this presentation has been prepared by Jacobs[®].

All rights reserved ©Jacobs [Year.]

This presentation is protected by U.S. and International copyright laws. Reproduction and redistribution without written permission is prohibited. Jacobs, the Jacobs logo, and all other Jacobs trademarks are the property of Jacobs Solutions Inc.

Jacobs is a trademark of Jacobs Solutions Inc.

