Consor

May 3, 2023

րիրերե

լելելել

րիրիրի

լելելել

լկկկկ

111111

լելելել

ղորը

ПП

Leveraging Hydraulic Modeling Tools for Pump Selection in Closed Water Systems

Case Study: Whatcom PUD No. 1 Water Treatment Plant 1

PNWS-AWWA 2023

Chadwick Johnson

Agenda

01 Open vs. closed pressure zones

02 Hydraulic Modeling 101

03 Case study: Whatcom PUD No. 1 WTP1

04 Key Takeaways

KEY POINTS

Question #1

What are the added complexities of designing and modeling pumps in a closed network?

Question #2

How can developing a hydraulic model assist with pump design?

Question #3

How can the hydraulic model inform operating constraints?

ուներին երկաներին երկաներին երկաներին երկաներին երկաներին երկաներին երկաներին երկաներին երկաներին։ Անվաներին երկաներին ե

01

Background

100.0 AVERAGE MAX DEMAND DEMAND 90.0 Operating Curve 1 80.0 70.0 60.0 TDH (feet) Max Operating Point 50.0 40.0 Avg Operating Point Friction Head (H_f) 30.0 20.0 Static Head (z) 10.0 0.0 6000 16000 0 2000 4000 8000 10000 12000 14000 18000 20000 Flow (gpm)

Pump Curve vs. System Curve

Review

Review

Pump Curve vs. System Curve

OPEN PRESSURE ZONES

- Tanks set the system pressure
- Storage provides supply during high demand
- Supply pumps, booster pumps, and PRVs operate based on pressure settings

Review

PR

Review

CLOSED PRESSURE ZONES

- No elevated storage
- Pumps maintain pressure and react to changes
 - Hydropneumatics zones
 - Variable frequency drives (VFDs)
- Pumps must cover wider range of flow and pressure conditions
- Risk of no supply is greater
 - No/limited storage if pump fails
 - Pump redundancy

ուներին երկաներին երկաներին երկաներին երկաներին երկաներին երկաներին երկաներին երկաներին երկաներին։ Անվաներին երկաներին ե

02

Hydraulic Modeling

րիրերե

111111

լելելել

111111

լկկկլ

կկկկ

COMMON APPLICATIONS

- Fire flow assessment for new developments
- System curve development and pump selection

• Focus for today

- System-wide capacity analysis
- 20-year Water System and Capital Improvement Planning (CIP)

Review

KEY CHALLENGES

- Initial investment in developing
- Learning new software and troubleshooting
- Collecting/processing data
 - Geospatial
 - SCADA
- User documentation ("Read me" file)
- Calibration and verification

Review

WHEN TO USE A MODEL?

- Already have an existing model
- Multiple operating scenarios
 - Easily change parameters to meet design requirements with data sets
- Complex system operations with multiple components

🔋 Activate 🔄 New Scenario 侯 📑 🗹 🏪 🔒 🕒 🐴 🚳 🌠 💸 👔 Network Data Scenario(s) EXISTING_CURRENT, Existing System with Current Improvement / -- MASTER_PLAN, Master Plan Scenarios BUILDOUT_2040_ADD, Buildout System 2040 Average Day Den □-□ BUILDOUT_2040_MDD_SS, Buildout System 2040 Max Day D BUILDOUT_2040_MDD_EPS, Buildout System 2040 Max D BUILDOUT_2040_MDD_FF, Buildout System 2040 Max Dav BUILDOUT_2040_PHD_SS, Buildout System 2040 Peak Hour EX_IMP_2020_ADD, Existing System with Imrovements Averag EX_IMP_2020_MDD_SS, Existing System with Improvements EX_IMP_2020_MDD_EPS, Existing System with Impr 2020 EX_IMP_2020_MDD_FF, Existing System with Improvement EX_IMP_2020_PHD_SS, Existing System with Improvements EXISTING_2020_ADD, Existing System 2020 Average Day Dema □-□ EXISTING_2020_MDD_SS, Existing System 2020 Max Day De EXISTING_2020_MDD_EPS, Existing System 2020 Max Dav EXISTING_2020_MDD_FF, Existing System 2020 Max Day EXISTING_2020_PHD_SS, Existing System 2020 Peak Hour D □-□ NEARTERM_2025_ADD, Nearterm System 2025 Average Day D 🖃 🗐 NEARTERM_2025_MDD_SS, Near Term System 2025 Max Da NEARTERM_2025_MDD_EPS, Near Term System 2025 Ma NEARTERM_2025_MDD_FF, Near Term System 2025 Max INEARTERM_2025_PHD_SS, Near Term System 2025 Peak H

Review

Scenario Explorer

='''', '''', (IF(INDEX(\$K8;\$AL8,1,MATCH((IF(\$B\$2+H\$3>=13, MOD(\$B\$2+H\$3, 12), \$B\$2+F IF(LEFT(G\$4, 3)="DEC", RIGHT(H\$4, 4), RIGHT(H\$4, 4)-1), \$K\$2;\$AL\$28 \$K\$3:\$AL\$3,0) 3.\$I\$3)*INDEX(\$K8:\$AL8.1.MATCH((IF)) \$B\$2+H\$3, 12), \$B\$2 W&IF(LEFT(G\$4, 3)="DEC",RIGHT() \$K\$2:\$AL\$2&\$K\$3:\$AL\$3,0 E(INDEX(\$K8:\$AL8,1,MATCH) MOD(\$B\$2+H\$3, 12), \$B\$2+H\$3))2 EFT(G\$4, 3)="DEC 4)-1),\$K\$2;\$AL\$2&\$K\$3;\$AL\$3,0))="" "address".OFFSET(INDEX(SK8:SAL8,1,MAT \$AL\$3,0)),0,-12))&":"&CELL("addre 8,1,MATCH((\$B\$2)&(\$B\$3),\$K\$2:\$AL\$2&\$k 1.MATCH((IF) \$B\$2+H\$3>=13, MOD(4 .+H\$3, 12), \$B\$2+H\$3))&IF(LEFT(G\$4, 3)≤ C,RIGHT(H\$4, 4), RIGHT(H AL\$2&\$K\$3:\$AL\$3,0))="",\$J\$2,\$I\$2) * (AVERA INDIRECT ("address", OFFSET(INDEX(\$K8;\$AL8,1,MATCH((\$B\$2)&(\$B\$3) 3,0)),0,-3))&":"&CELL("address",OFFSET(INDEX(<mark>\$K8:\$AL8</mark>,1, vIATCH((\$B\$2)&(<mark>\$B\$3</mark>),\$K\$2:\$AL\$2&\$K\$3:\$AL\$3,0)),0,-1)))))))

Considerations

OTHER BENEFITS

- Mapping pipe flow, pressure, and velocity
- Can be exported and used in other modeling platforms
- Utility can fine tune operations to improve efficiency
 - Pumps
 - Reservoirs
 - PRVs

System Curve Tools

- System Curve tool
 - Easy way of checking system curve at pumps in open zones
 - Added complexity in closed zones with an elevated tank to set the hydraulic grade line

Output Source Name:	*Active*:System Curve	~ *	🕻 🗟 🚔 🖯 🐴 🛠 o
Beference:	2042_PHD, System Curve S	Simulation	
Standard	🛤 Break	A Fireflow	Multi-Fireflow
Target Pump ID: Curve Type	Exponential	ME O Multi-Point	LCHER_PS_1
Report Data Points			41
🗹 System Curve @	Steady State		Select Time
🗌 System Curve @	Steady State		Select Time
🗌 System Curve @	9 Steady State		Select Time

ուներին երկաներին երկաներին երկաներին են ներկաներին երկաներին երկաներին երկաներին երկաներին։ Անվաներին երկաներին երկաներին են ներկաներին երկաներին երկաներին երկաներին երկաներին երկաներին երկաներին երկաների

03

Case Study

Case Study WPUD1 WTP1: High Head Pump Station

Ferndale, WA

Whatcom County PUD No. 1 (WPUD1) Water Treatment Plant 1 (WTP1) High Head Pump Station (HHPS)

Preliminary design of a 21 MGD pump station in a closed water system

WPUD1 WTP1 HHPS Background

- Location: Ferndale, WA
- Non-potable water (industrial and irrigation customers)

WPUD1 WTP1

HHPS Case Study

PROPOSED IMPROVEMENTS

- Complete replacement of WTP1 including the HHPS
- Increase capacity of WTP1 to 21 mgd
- Full redundancy
- Transmission main improvements (from CIP)

Existing

Proposed

Case Study Objectives

Design Tasks

- Develop system curve for existing and future operating scenarios (based on CIP)
- Use system curve to select type and number of pumps to cover full operating range
- 3. Verify pressure in pipe does not exceed pipe rating
- 4. Advise client on pump operating constraints

Case Study Objectives

Why use a model?

ш

ш

լկկկկ

111111

իկկկի

ارارارار

[[]]]]]]

- Pumps will have massive power requirement (~1000 hp), don't want to oversize
- 2. The model will provide more dynamic platform for testing multiple scenarios:
 - a) Multiple supply sources
 - b) Existing vs. future
 - c) Flow loss along the transmission main

Overview

Modeling Steps

<u>III</u>

ЦЦ

րիրիրի

որոր

րիկել

111111

լկկկկ

լելելել

կկկի

րիկել

կկկկ

րիրիրի

կկկկ

րիրիրի

[[[]]]]

- 1. Data analysis
- 2. Model set up
- 3. Scenario management
- 4. Verification of model results
- 5. System curve development
- 6. Pump selection

Time (t)

Case Study Data Analysis

FLOW PATTERNS

- Daily demand fluctuations
- Peaking factors
- Industrial customers
 operate more consistently
 than residential
- Water balance

Data Analysis

CONTROL POINTS

- Fictious reservoirs:
 - Set HGL at control points
 - Balance supply / demand
- (Pro) Know we're hitting the correct pressure at the control point
- (Con) Accuracy decreases the further away from exact demand

Model Set Up

NJECTIONS

- Check system curve by plotting a series of injections at different flow rates
- If negative pressures are shown, something is probably wrong
 - Indication that the results at those flow conditions are inaccurate

Always ask: Does the system curve make sense???

System Head Curves for Pump U7014,

Scenario Management

	Scenario 1	Scenario 2	Scenario 3	Scenario 4
WTP	WTP1 online WTP2 offline	WTP1+2 online (normal operating condition)	WTP 1 online	WTP2 online WTP 1 offline
Demands	Operating Demand (21 MGD)	Each WTP splitting operating demand (10.25 MGD each)	Southern customers only at operating demand (7.8 MGD)	Operating Demand (21 MGD)
Intertie	Open	Open	Closed	Open
Piping	Existing/Future	Existing/Future	Existing/Future	Existing/Future

լկկկկ

կկկկ

լկկկլ

111111

իկկի

111111

րիրիլ

111111

րիրիլ

111111

լկկկլ

111111

լկկկլ

կկկկ

րիրիլ

նիկի

Case Study Model Verification

Pump Flows

All Demands and Pressures

DIFFERENCE BETWEEN MODEL AND SCADA IS CONSISTENT

Case Study Model Verification

- Compare SCADA readings to model output with scripting
- Used Root-Mean-Square analysis to understand if model results are acceptable

• Target < 5%

Case Study Model Verification

SCADA > MODEL

- Aging existing pumps no longer operating on their original pump curve
- Different number of pumps operating than expected
- Manual operation / throttling
- Inaccurate elevations at pump stations or service connections

SCADA < MODEL

- Not enough losses in the pipeline (Partially closed valves, Hazen "C" value)
- Additional field tests may be required

- System Curve Development
- At this point, our injections, model generated operating curves, and SCADA data is lining up
- Now we need to define
 boundary conditions (high and low curve)

• Channel your inner artist!

Case Study Pump Selection

PUMP SELECTION

- Choosing pump style
 - Split-case horizontal
 - Vertical turbine
- Determine number of pumps (firm capacity)
- Variable frequency drives (VFDs)
- Understand power limitations
- Phasing of pump installation
- Plan for build out

Pump Selection

Operating Constraints

Case Study Operating Constraints

Summary of Analysis

- Pipe limitations
 - PUD cannot supply 21 mgd until transmission main is upgraded
 - PUD cannot meet south targets with intertie closed and existing piping
- Pump vs. System Curve
 - Three (3) 1000 HP vertical turbine pumps to meet existing conditions (firm)
 - Four (4) pumps to meet future conditions (firm)

WPUD1 WTP1 HHPS

Case Study

CONTINUED BENEFITS

- Model can be used by the client for futiplanning work
 - CIP tracking and updating
 - Development capacity
 - Fine tuning operations
- Can exported to other platforms

Scenario 1A - Figure 8: Predicted HGL elevations along Path A following loss of power

---- Pipeline Elevation ---- Minimum HGL ----- Maximum HGL ----- Steady State HGL

()4

Key Takeaways

ШI

կկկկ

Pumps dictate pressure

Wide range of flow and pressures

Reacting to system changes

Setting control points

Inaccurate results using built in system curve tools

Question #1

 What are the added complexities of designing and modeling pumps in a closed network?

ш

ш

ШI

ШI

<u>III</u>

ПП

ш

րիկել

կկկկ

أرارارار

ارارازار

Understand boundary conditions

Scenario management

Account for network <u>complexities</u>

Question #2

• How can developing a hydraulic model assist with pump design?

ш

ШI

ШI

ШI

ш

ابارارار

կկկկ

ارارارار

1111111

Number of pumps operating

Pipe upgrade requirements

Reservoir, VFD, PRV settings

Question #3

• How can the hydraulic model inform operating constraints?

Thank you!

