Legacy Manganese in Distribution Systems

Michael Hallett Confluence Engineering Group LLC

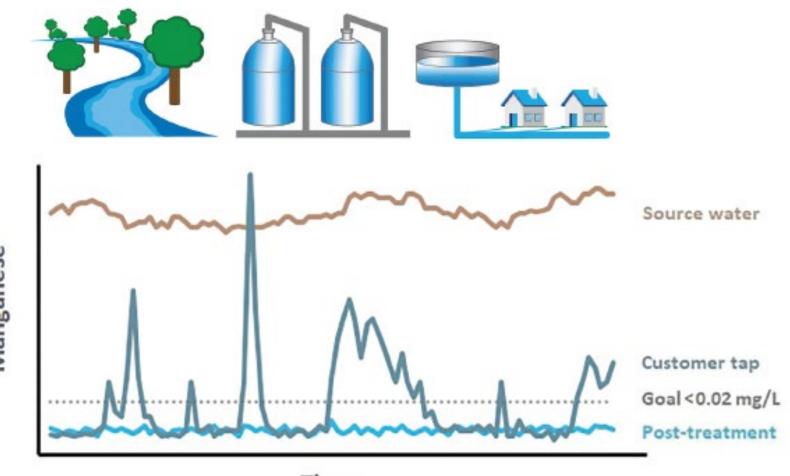
Overview and Purpose

- Manganese (Mn) deposit accumulation and release within the distribution system
- Water chemistry factors that affect stability of legacy Mn deposits
- Guidance for utilities to assess and mitigate legacy Mn risks

Distribution Systems are Reactors

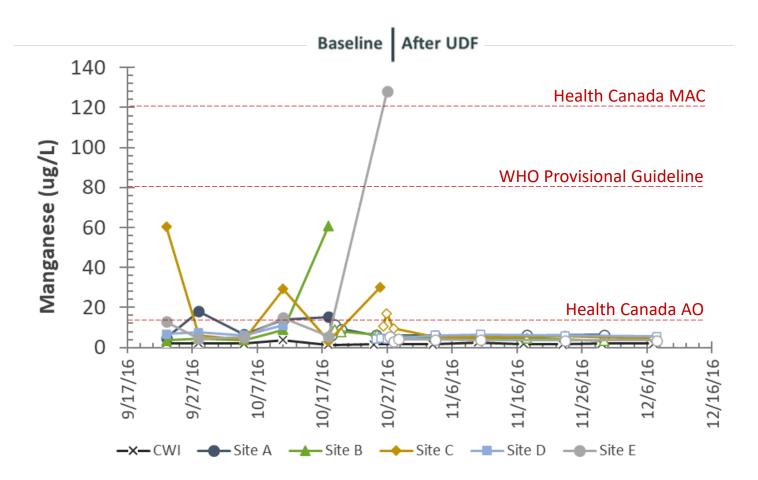
- Pipes act as accumulation "sinks" for Mn and other metals
 - MnOx coats pipe walls... and then attracts more Mn
- Accumulated Mn deposits can be re-mobilized (released)
 - Changes in water chemistry or flow hydraulics
 - [Mn] at the tap \neq [Mn] at entry-points

The Water Main as a Reactor


Sorption Co-precipitation Sedimentation
Desorption Destabilization Transformation Hydraulics

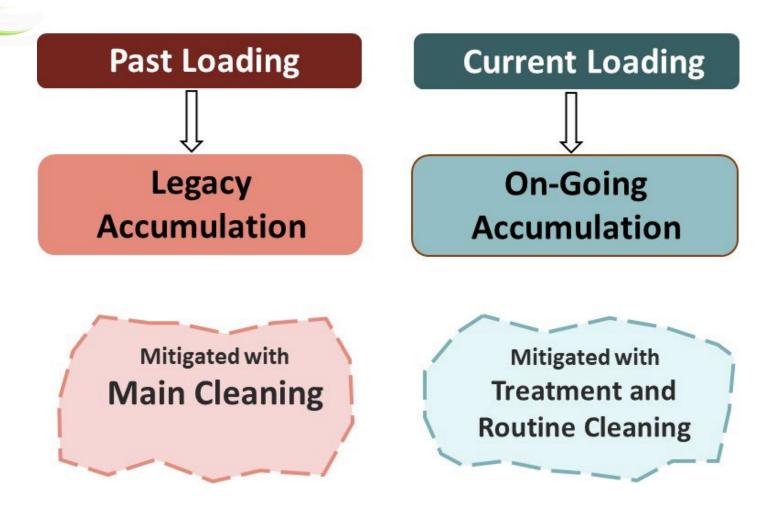
Numerous mechanisms can affect contaminant fate and transport within distribution systems, resulting in water quality variations at -the-tap.

Accumulation and Release



Manganese

Time

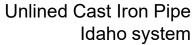

Releases Occur Under Routine Conditions

- Due to dynamic hydraulics of distribution systems
- Difficult to anticipate
- Usually go un-detected
- Routine unidirectional flushing (UDF) can prevent "hydraulic releases"

Source: Hill et al. 2018 (WRF 4653)

Legacy Manganese Exists in All Systems

Legacy Mn in Distribution Systems

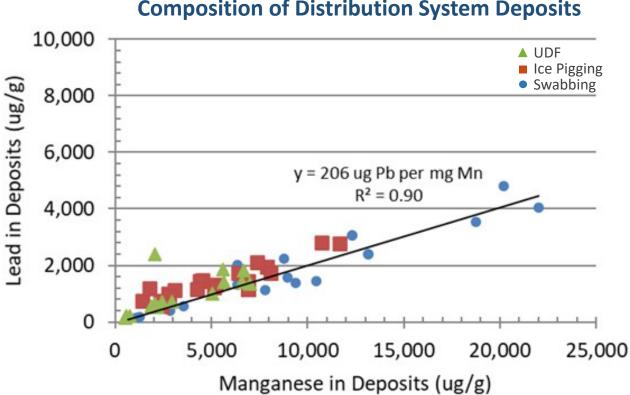

C900 PVC Pipe Calif. system

Asbestos Cement Pipe Utah system

Legacy Mn in Distribution Systems

Cement-Lined Ductile Iron Pipe Utah system

Mn Accumulation in Premise Plumbing

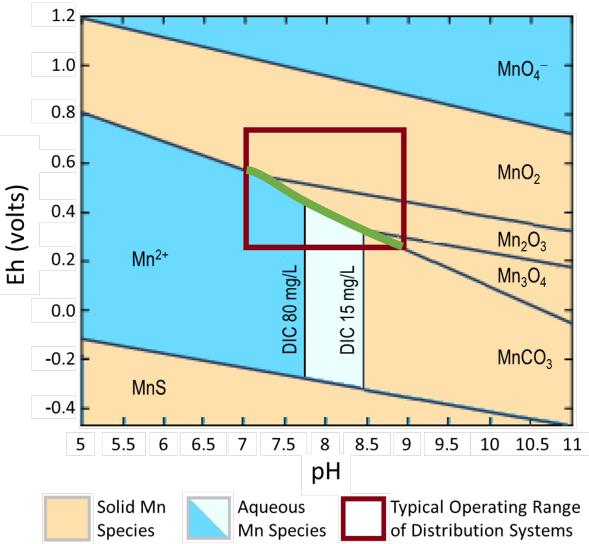

In-house "flushing" to remove Mn from residential plumbing

Source: Confluence Engineering Group LLC

Co-Accumulation of Heavy Metals

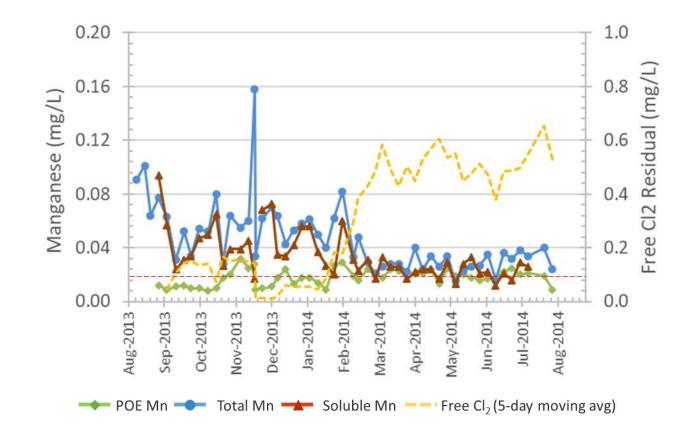
- MnOx solids have tremendous. adsorptive capacity for heavy metals
 - Most notably, lead (Pb²⁺)
 - Mn scavenges "non-detect" Pb present in source water
- Comparative adsorptive capacities
 - Pb:Mn ~ 10-100 ug/mg
 - As:Fe ~ 1-10 ug/mg
- Co-release or desorption
 - Mn releases of ~ 0.05 mg/L can cause Pb ~ 0.01 mg/L

Composition of Distribution System Deposits


Source: Friedman, Hill, et al. 2016 (WRF #4509)

Manganese Release Mechanisms

	Hydraulic	Chemical
Form of Mn Released	Particulate solids	Soluble or mixed-phase
	Discolored water might help signal an upset to customers	Less color per mg/L of Mn released (higher risk of exposure)
Typical Scope of Impact	Fairly localized Short-lived Mitigated with flushing	More widespread Prolonged Can last several weeks or months Difficult to mitigate


Legacy Mn + Chemistry Change = Re-Equilibration

- Leads to Destabilization
- Primary Chemistry Risks
 - Δ ORP (critical Eh ~ 0.4 V)
 - \downarrow pH (by ~0.3-0.5 or more)
- Other Factors (empirical)
 - \downarrow DIC
 - 1 Sulfate

Source: Hill and Lemieux, 2022

Example of Chemical Release Event Involving Soluble Mn

Source: Confluence Engineering Group LLC

Events that Risk Mn Destabilization

- Introducing a new source
- Seasonal use of dissimilar sources (e.g., SW ↔ GW)
- Change in disinfectant type or residual concentration (\uparrow or \downarrow)
 - Converting secondary disinfectant
 - First-time introducing secondary disinfection
 - Drop or boost in chlorine residual
- Treatment change or chemical process upset
- Variability in source water pH
- Nitrification, especially in poorly buffered waters

Mn Destabilization Event in Woodland, CA

- Groundwater-only system until mid-2016
 - 100+ years of groundwater supply
 - Mn was ≤ 0.02 mg/L in all wells
- Proactively conducted system-wide UDF and NO-DES to prepare the distribution system
- Introduced treated Sacramento River water in June 2016
 - Large drop in DIC and mineral content
 - Sharp increase in Cl₂ Residual (SWTR)
 - POE: 0.2 mg/L \rightarrow 1.1 mg/L
 - Dist. System: 0.1-0.2 mg/L \rightarrow 0.5-1.0 mg/L
- Starting about 2 weeks after surface water introduction...

Destabilization Event (continued)

- Widespread, frequent discolored water episodes and complaints
 - Mn often ≥ 0.1 mg/L at customer taps (sometimes ≥ 1 mg/L)
 - Dissolved and particulate forms
- Caused by chemical destabilization and dissolution of legacy Mn films

Source: Customer video posted on City's Facebook page

Destabilization Event (continued)

- Upset lasted 12 months despite extensive mitigation efforts
- Repeat UDF was inadequate to control the problem (but helped accelerate recovery)
- Aggressive cleaning with foam swabbing was needed in certain neighborhoods

Manganese is Relentless

- Mn accumulates at all concentrations (SMCL is inadequate)
- It never stops accumulating, even after treatment
- It co-accumulates and co-releases heavy metals
- Legacy Mn doesn't "go away" on its own
- It is sensitive to changes in water chemistry
- Releases can cause Mn and other metals to exceed health-based levels at the tap with or without discoloration

Utilities should develop a source-to-tap plan to continuously control Mn accumulation

Michael Hallett, COO/Field Services Lead Confluence Engineering Group LLC <u>michael@confluence-engineering.com</u>