Integrated Modeling to Optimize Ecological and Agricultural Water Supply Enhancement

> Jason Keller, Scott Waibel, and Michael Milczarek GeoSystems Analysis, Inc.

Troy Baker Walla Walla Basin Watershed Council

Location

Water Resource Issues in the Walla Walla Basin

Over allocation

- Historic dewatering of river during summer (until 2000)
- Agreement to maintain minimum flows in Walla Walla River for fish habitat (25 cfs)

Endangered fisheries

- ESA listed Steelhead and Bull Trout
- Reintroduced Chinook Salmon
- Declining aquifer
 - Water table decline of 2 inches per year since 1950
- River seepage
 - Estimated 20% loss of stream flow (source of aquifer recharge)

Project Goals

- Develop calibrated groundwater-surface water model for alluvial aquifer portion of the Walla Walla Basin
- Quantify current demands and distribution of water resources
- Evaluate surface water and groundwater management scenarios:
 - Baseline Current canal conditions and managed aquifer recharge (MAR) levels
 - Canal lining (piping) and:
 - No MAR

GeoSystems

- Current MAR
- Increase MAR
- Maximum MAR

Current Managed Aquifer Recharge (MAR)

- Water diverted from Walla Walla River (November to May)
- Permeable basins or infiltration galleries (perforated underground pipeline)
- Uses existing irrigation conveyance network
- Used as seasonal storage to:
 - Supplement irrigation
 - Build groundwater levels
 - Increase base flows

Model Development and Calibration

Integrated Water Flow Model

IWFM code developed by CA DWR

240 square miles

Model Grid

- 16,215 model elements (average ~10 acres)
- > 8,294 nodes (average spacing ≈1,000 feet)
- 1,506 stream nodes
- 91 stream segments

Model Layers

Representative finite element

Land Use

Walla Walla Basin Model Flow System

Model Calibration

- Sensitivity analysis on hydraulic conductivity parameters
- Systematically adjust sensitivity parameters to improve fit of simulation to data
- Calibration data
 2007-2009, 2011,
 2013
- Validation Data 2010 & 2012

GeoSystems Analysis, Inc.

Model Scenarios

Model Inputs

- Forward model projection (steady-state)
- Apply calibrated model parameters
- > Average daily data from model development period for:
 - Climate
 - GW boundary conditions
 - Stream inflows
 - Agricultural/municipal water use
- MAR rates

Model Scenarios

- 1. Baseline Forward Model (BFM)
 - 9,014 acre-ft/yr MAR at 7 current active sites
 - No additional canal piping (50 miles piped canals)
- 2. Canal piping + no MAR (86 miles added piping)
- 3. Canal piping + current MAR
- 4. Canal piping + increased MAR
 - 14,566 acre-ft/yr MAR at 22 locations
- 5. Canal piping + maximum MAR
 - 24,201 acre-ft/yr MAR at 60 locations

MAR Locations

Piping Locations

Model Results

Groundwater Storage

- Seasonal changes in response to recharge and groundwater pumping
- > Pipe installation predicted to decrease aquifer storage if MAR

Water Budget

Groundwater discharge to streams

- No MAR: 11% decrease
- Current MAR: 4% decrease
- Increased MAR: 0.5% decrease
- Maximum MAR: 9% increase

Change in Groundwater Elevation

Streamflow Locations

Pepper Bridge

Touchet

Conclusions

Canal piping likely to have negative impact on groundwater resources and limit instream water savings

Combining piping with MAR can mitigate impacts

- Increased MAR nearly mitigates impact
- Maximum MAR (60 sites) provides most widespread benefit to fish habitat by allowing for significantly increased summer flows
- Conjunctive management of groundwater and surface water can provide water for irrigators while increasing summer flows

Thank you!

More information at: http://www.gsanalysis.com/publications.html

