Installing Earthquake Resilient Watermains in Constrained Corridors

Outline

ERDIP Introduction

Project Description

Challenges

Solutions

- Thrust Restraints
- Large Utility Crossings
- Appurtenance Structures
- Corrosion Protection Design for Gas Main Crossing

PNW Faults

Earthquake Resilient Ductile Iron Pipe (ERDIP)

Type of restrained joint

Design Seismic Hazard

- Temporary Ground Deformation
- Nearby Non-Resilient Structures
- Permanent Ground Deformation International Standard ISO 16134
- Expansion/Contraction
- Pull Apart Resistance
- Joint Deflection Angle

US Pipe

Kubota

ISO 16134

	CLASS	COMPONENT PERFORMANCE
Expansion/Contraction Performance (Elongation)	S1	\pm 1% L or more
	S2	\pm 0.5% L to \pm 1% of L
	\$3	Less than \pm 0.5% of L
Pull Apart Resistance	Α	17,000 d lbs +
	В	8,500 d lbs-17,000 d lbs
	С	4,250 d lbs-8,500 d lbs
	D	Less than 4,250 d lbs
Joint Deflection Angle	M1	15° or more
	M2	7.5° < 15°
	M3	Less than 7.5°

"L" is the component length in inches

"d" is the nominal pipe diameter in inches

Project Details – Earthquake Impacts

Earthquake Zones

- Seattle Fault Zone: <7.3 magnitude earthquakes
- Cascadia Subduction Zone: 9.3 magnitude earthquakes

Ground Response

• - Liquefaction

Project Details – General

- Major street/intersection of a strip mall
- Watermain serves the strip mall and is a main conveyance pipe from the water reservoir
- Existing 12" ductile iron watermain
- Proposed 16" earthquake resilient ductile iron watermain
- Proposed 9'x4' concrete storm box
- Watermain lies between storm box and sewer pipe

Project Challenges Overview

- 1.5' horizontal clearance between water and sewer
- 1.5' horizontal clearance between water and storm box
- Watermain crosses underneath 9'x4' storm box
- Impacts of liquefaction on mostly empty structures
- Providing cathodic protection for a gas main while threading the needle between existing utilities

Thrust Restraints

How do you install thrust blocks with 1.5' clearance between the watermain and storm box?

- Precast dailey blocks
 - Thin concrete block
- Dual layer crisscross rebar pattern for reinforcement

Large Utility Crossings

- What pipe material should be used for large utility crossings?
- Restrained or fused pipe that will act as one cohesive unit during the seismic event

Appurtenance Structures

- What type of structures should be used to house large appurtenances?
- Bottomless structures
- Empty, light structures tend to float during liquefaction

Cathodic Protection Design for OPL Crossing

Fusible PVC

• Fabricated sweep for vertical bend

Conclusion

Toolbox additions:

- Precast dailey blocks are an option for thrust restraints in horizontally limited areas
- For large utility crossings use pipe that will act as a single unit during a seismic event
- Large appurtenances should be housed in bottomless structures
- Fusible PVC as a cathodic protection solution

Questions?

Sarah.Merrill@wsp.com

