Alex Mofidi, Chris McMeen and Virpi Salo-Zieman **Confluence Engineering Group**

Tyler Clary and Patrick Craney City of Vancouver, Washington

John Porcello and Jack Dahl **GSI Water Solutions**

American Chemical Society

YouTube: In Search of (1978)

2023 Section Conference May 3-5, 2023 **Kennewick**, WA

Discussion Topics

- 1. City of Vancouver Background
- 2. The Influx of PFAS
- 3. Strategically Finding Environmental PFAS: Modeling and Choosing Sources Wisely
- 4. Resulting Monitoring Approach

Background

Water Supply for City of Vancouver, WA

- 100% Groundwater; Mix of Deep and Shallow Aquifers
- Water Stations (WSs) Comprised of Multiple Wells
- Average 2021 PFOS Data Shown from 1 to 2 samples from each well from each WS

Approximate Values	Vancouver Shallow Aquifer Wells (Deep Aquifer Sources Not Shown; 2023 Data Not Shown)									
WS Number	1	3	4	5	6	7	8	9	14	15
Total Wells, ea.	13	3	6	NA	NA	1	2	5	3	4
Capacity, gpm x 1000	26	6	9			1	1	10	3	2
Aquifer (LO or UO)	LO	LO	LO			UO	UO	UO	UO	UO
Screen Top Depth, ft	180-220	230-250	85-97			270	90-165	130-200	150-170	70-115
Year Ops Started	1938	1945	1978			1970	1958	1974	1979	1981
Avg PFOS (2021)	4.3	7.7	19.5			6.9	17	14	23	15

NA = Wells Not Applicable for this Discussion

LO = Lower Orchard Aquifer UO = Upper Orchard Aquifer

Investigating PFAS Solutions: A Summary

- 2021: PFAS Landscape Unclear
 - No cleanup requirements for Superfund sites <70 ppt (EPA HAL at that time)
 - Expecting WA SALs; levels yet TBD --- and the EPA path is yet unclear
 - Very limited sampling indicates PFAS >detection in shallow wells
 - Vancouver: Develop customer communications & consider environmental sampling
- 2022: PFAS Landscape Changes Rapidly
 - WA SALs expected to be <70 ppt; Vancouver begins investigating treatment
 - Confluence paper investigation into potential PFAS sources (WDOH, Ecology, other)
 - Federal regulatory landscape still uncertain
- Late 2022 / Early 2023: WA SALs set, very low USEPA MCLs proposed
 - No primary point source found in the region Need to dig deeper

The Influx of PFAS

- Perfluorinated compounds used since the 1950s
 - Also polyfluorinated compounds and perfluoroethers (ADONA, GenX)
 - Little information on chemical structures of latest PFAS or environmental behavior
 - Used for frictional resistance, adhesion, waterproof and breathable membranes

Both figures from 2020, Magazine of the German Environment Agency, What Matters: PFAS Came to Stay. January.

- Perfluorinated compounds used since the 1950s
- They Are Prolific in the Environment

confluence

Environ. Scl. Technol. 2004, 38, 4489-4495

- Perfluorinated compounds used since the 1950s
- They Are Prolific in the Environment
- They Are Still Being Used
 - Part 139 airports/fire suppress.: MILSPEC F3 (?)
 - Still in your clothing, cookware, etc.
 - Industrial applications
 - Cheap, sold on-line, and a 5-gal bucket can cause >70ppt PFOS in a well*

CHEMGUARD MSDS Ingredients Information

CAS NO.	Common Name
7732-18-5	water
57018-52-7	propylene glycol t-butyl ether
7487-88-9	magnesium sulfate
proprietary mixture	proprietary hydrocarbon surfactant
proprietary mixture	proprietary <mark>fluor</mark> osurfactant

* Based on estimates by Higgins, C., "PFNA in AFFF" Presented to advisory committee of the Delaware River Basin Commission on June 15, 2022. 2023 PNWS-AWWA Conference, Kennewick, WA

- Perfluorinated compounds used since the 1950s
- They Are Prolific in the Environment
- They Are Still Being Used
- Varying Exposure (Depending On Where We Live)
 - Diet from 16 to >99%
 - $\,\circ\,$ Dust and tap water from <1 to 96%
 - $\circ\,$ Dermal and Inhalation from <1 to 15%
 - Other (carpet, food packaging, and consumer goods) from 2 to 28%

- Perfluorinated compounds used since the 1950s
- They Are Prolific in the Environment
- They Are Still Being Used
- Varying Exposure (Depending On Where We Live)
- Good News: WWTP PFAS Discharges Decreasing

miology

- Perfluorinated compounds used since the 1950s
- They Are Prolific in the Environment
- They Are Still Being Used
- Varying Exposure (Depending On Where We Live)
- Good News: WWTP PFAS Discharges Decreasing
- Bad News:
 - Poor Usage Records for AFFF
 - PFAS can be found everywhere.

With no primary point source: Where, how, and why do you choose a location to investigate?

In Search Of..... PFAS

Goals and Strategy

- Identify Opportunities for the City
 - Capital investments that might significantly reduce regional loading
 - O&M or local activities to better identify and reduce higher risk practices
- Identify Point Sources & Define Diffuse PFAS Subsurface Transport
 - $\circ~\mbox{Find}~\mbox{sources}$
 - Is the City on the front- or tail-end of subsurface transport
 - Estimate regional/subsurface recycling and "time remaining"
- Inform Wellhead Treatment Planning and/or Communications
- Approach
 - Characterize Highest Potential Sources (and Continue Investigation into Past)
 - Characterize Subsurface Mobility (and fingerprint, although transformation may occur)
 - Implement Adaptive Environmental Monitoring Plan

Characterize Sources

 USEPA PFAS Tool, Superfund Sites <70 ppt PFAS (or no data), WA Ecology & WDOH Info., & "find" past AFFF use

Characterize Sources (Cont.)

 USEPA PFAS Tool, Superfund Sites <70 ppt PFAS (or no data), WA Ecology & WDOH Info., & "find" past AFFF use

GIS Info Gathering and Tracking

Septics

Characterize Sources (Cont.)

- USEPA PFAS Tool, Superfund Sites <70 ppt PFAS (or no data), WA Ecology & WDOH Info., & "find" past AFFF use
- Septic Tanks
- Drywells & Infiltration Structures Handling 60% of City Stormwater: More than any other Western WA municipality)
 Storm Inputs

Update the Portland Basin Groundwater Model

 Initially developed by USGS in mid 1990's

EASTSIDE VANCOUVER AND PORTLAND AQUIFERS

Update the Portland Basin Groundwater Model (Cont.)

- Initially developed by USGS in mid 1990's
- Refinements made by GSI
 - Grid resolution for capture zone analysis
 - Surface hydrostratigraphy contact elevations
 - Calibration simulations with City Water Stations
 - Covers entire City & portions of County south of the East Fork Lewis River

Update the Portland Basin Groundwater Model (Cont.)

City of Vancouver Model Cell size 800 x 800 feet

(Next Slide)

Update the Portland Basin Groundwater Model (Cont.) Station 9 SI Water Solutions, Inc.

confluence 23

Confluence 26

Groundwater Model Results (Cont.)

- Significant Differences from Previous Well Capture Zones
- Sensitivity Analysis Insights (hydraulic conductivity unknowns)

Groundwater Model Results (Cont.)

- Significant Differences from Previous Well Capture Zones
- Sensitivity Analysis Insights (hydraulic conductivity unknowns)
- Overall Increased Granularity and View of City-Wide GW Flow
 - Unconfined aquifer leakage
 - Approx 50-yr TOT
 - Interestingly: 1x turnover for PFAS's peak time of use

Rough Years

confluence 28

Monitoring Approach

Proposed Monitoring Areas

Proposed Monitoring Areas (Cont.)

Proposed Monitoring Areas (Cont.)

Monitoring Zone ID	Zone Description	Likely Characterizations Made
Α	WS 14+15 and Landfill (L)	Diffuse and Lisources. (ransport tracking (L⇔15)
В	TOT through WS 8 and 7	Diffuse sources (ransport)tracking (8⇔7-1)
C	WS 9	Diffuse sources
D	WS 4 with TOT after WS 15	Diffuse(sources, transport tracking (L⇔15⇔4)
Е	WW characteristics	Diffuse sources (and correlation with sucralose to use as a surrogate for future septic/WW sampling)
F	WS 1+3, TOT after WS 14	Diffuse sources (transport (L⇔14⇔3; L⇔15⇔1)
G	Columbia river	River source contribution for WS 1+4, defining if stormwater is a significant impact to the river levels

2023 PNWS-AWWA Conference, Kennewick, WA

Primary sampling recommendation Secondary sampling recommendation Proposed Monitoring Areas (Cont.)

Primary sampling recommendation Secondary sampling recommendation

Liquid samplesBiosolids or other solids samples

- Start in the North for A, B, C then move south
- Is there data or do we collect samples?
- Geospatial selection of nearby sites at each "X"
 - Class A and Class B Public Water Supply Wells and City monitoring wells
 Subsurface characterization &
 - helping to finding point sources.
 - Septic systems (with surrogates) & stormwater capture structures
 ⇒ Significance of diffuse pollution & helping find point sources.

Next Steps

- Moving Forward With Environmental Monitoring
- Results will consider PFAS magnitude and fingerprint identification
- Digest Results and Adapt Monitoring
 - New sites/locations?
 - Identifying point sources?
 - Drop a sample type off the list?
- Reach goal of PFAS 'found' and provide City with information that supports opportunities to further protect public health

In Search of.... PFAS

Alex Mofidi Alex@Confluence-Engineering.com

Thank You!

American Water Works Association
Pacific Northwest Section

2023 Section Conference May 3-5, 2023 Kennewick, WA

