Howlong is Toolong? Evaluating Extanded

How Long is Too Long? Evaluating Extended Biofilter Shutdown at Hayden Bridge (WRF Tailored Collaborative #4984)

Michael J. McKie^{ac}, Toby Dixon^b, Jared Giacomelli^b, Lonny Sayles^b, Ray Leipold^b & Robert C. Andrews^a

^aUniversity of Toronto ^bEugene Water and Electric Board ^cC3 Water Inc.

May 5, 2023

Hayden Bridge Filtration Plant

Conventional treatment plant

Convert from chlorine gas to on-site sodium hypo

Operational Considerations

Rated plant capacity is 88 MGD

• Daily production <40 MGD

Rotate through 14 dual-media filters

- Shutdown following backwash
- 3-5 days during warm-water operation (>10°C)
- Up to 7 days during cold-water (<10°C)

Filter-to-waste occurs prior to production

Our Definition of Biofiltration at EWEB

Warm Water Tests

Filters operated without upstream disinfectant residual (no Cl)

Utilize existing anthracite media

Operation allows bacterial attachment and biofilm to form

Bacteria in biofilm may degrade, oxidize or consume substrates

Acclimation

Background

Conclusions

Cold Water Tests

Project Objectives

1) Evaluate impact of removing pre-chlorination

- Potential biomass development
- Water quality and production
- 2) Identify effective monitoring parameters
 - Biomass, water quality and production
- 3) Examine biofilter shutdown up to 96 hours

HBFP Pilot Facility

HBFP Pilot Facility

Control and Chlorinated Pilot Filters

Experimental Pilot Filter

Conclusions

Filter Details

Full-scale filter

- Operated as necessary for production
- Chlorinated surface sweep

Chlorinated pilot filter

- Utilized for full-scale plant optimization
- Chlorinated backwash

Control pilot filter

Background

Operated continuously

Acclimation

• De-chlorinated backwash (ascorbic acid)

Experimental pilot filter

- De-chlorinated backwash (ascorbic acid)
- Shutdown duration increased on a two-week schedule

Warm Water Tests

Cold Water Tests

8

Phase 1: Filter Acclimation

Experimental filter commissioned December 2018

- Anthracite and sand from full-scale
- Operated continuously to mimic control filter
- Control and chlorinated filters previously operated

Evaluation of acclimation included:

- Biomass development (via ATP)
- Biofilm activity (via enzyme activity)

Worst-case scenario (cold-water conditions <10°C)

9

Biomass Development

Biological Activity

Acclimation Summary

Biomass develops within 3 to 4 months of operation

Cold-water may have slowed growth

Biological <u>activity</u> similar to control in <1 month

- Develops before biomass
- May be a better indicator of acclimation

Similar filtered water quality - January to March

• Relatively low organics removal (<5% DOC)

Warm-Water (>10°C) Shutdown Testing

Shutdown durations of 2 to 48 hours

• Each condition evaluated for 2 weeks

Samples collected weekly

- Biomass characterization (ATP, enzyme activity)
- Organics (DOC, UV₂₅₄, THM FP, HAA FP)
- Water quality (DO, pH, turbidity)

Unit filter run volume calculated

Biomass Density - ATP

Biological Activity - Esterase

Summary of Biomass Characterization

Similar ATP trend observed between control and experimental filters

• Potentially related to substrate (i.e. carbon)

Esterase activity elevated with extended shutdown

• Relatively more active biomass

No relationship to temperature observed

Organics Removal

Background	Acclimation	Warm Water Tests	Cold Water Tests	Conclusions	
		-			INSERC CHAIR IN DRINKING WATER RESEARCH

THM FP Reduction

Acclimation

Background

Cold Water Tests

Conclusions

Warm Water Tests

Summary of Water Quality Monitoring

Similar effluent water quality observed

• No statistical difference between filters

Common monitoring parameters (e.g. pH, DO uptake, UV_{254}) poor indicators of performance

- Limited resolution
- No trends to regulated parameters

Biofilter shutdown did not impact performance

Filter Production

Background	Acclimation	Warm Water Tests	Cold Water Tests	Conclusions	DWRG 🔵
		-	-		INSERC CHAIR IN DRINKING WATER RESEARCH

Summary of Warm-Water Testing

Shutdown >12 hours increased production

• Up to 100% improvement

Water quality was not impacted by shutdown

Extended shutdown improved biological performance relative to continuous operation

Full-scale biological operation viable

Background	Acclimation	Warm Water Tests	Cold Water Tests	Conclusions
------------	-------------	------------------	------------------	-------------

Cold-Water (<10°C) Testing

Shutdown durations of 4 to 96 hours

• Each condition evaluated for 2 weeks

Samples collected weekly

- Biomass characterization (ATP, enzyme activity)
- Organics (DOC, UV₂₅₄, THM FP, HAA FP)
- Water quality (DO, pH, turbidity)

Testing conducted November to March

22

THM FP Removal

23

Filter Production

Acclimation

Background

Warm Water Tests

Biofiltration improved UVRF by 20% on average

Average variability reduced by 18%

Cold Water Tests

Shutdown increased UFRV by 77% and reduced variability by >50%

Conclusions

Summary of Cold-water Testing

Shutdown up to 96 hours did not impact:

- Biomass density
- Biological activity
- Organics reduction

Steady-state operation achieved within 4 hours

• Prevent simultaneous start-up of filters

Similar treatment provided during warm-water (>10°) and cold-water (<10°C) conditions

Project Summary

Elimination of pre-chlorination resulted in biological acclimation of filters

Biofilter shutdown in warm- (>10°C) and cold- (<10°C) water did not impair performance

• Some improvements observed (e.g. UFRV)

Enzyme activity - may be preferred monitoring parameter for biological processes

• Shorter shutdown limits effluent activity

Biofiltration Evolution

GAC Filter Caps

- Equip experimental filter with shallow GAC cap
- Improve biological growth and provide limited adsorption capability

Evaluation of algae and toxin removal

• GAC may improve toxin removal

Biofilter enhancement

• Promote biological activity and degradation

					_
Background	Acclimation	Warm Water Tests	Cold Water Tests	Conclusions	DWRG 🔵

Next Steps - GAC Caps

6" caps added to experimental filter

• Corresponds to media depth added to alleviate existing media attrition

28

Project objectives included:

- Removal of organics (DOC, DBPs, etc)
- Chlorine demand
- Control of cyanotoxin surrogates

Justify anthracite replacement with GAC

• Cost-benefit analysis

Cyanotoxin Surrogate Removal

Bed Volumes x1000

Background	Acclimation	Warm Water Tests	Cold Water Tests	Conclusions	DWRG 🔵
					INSERCI CHAIR IN DRINKING WATER RESEARCH

Organics Removal

Crowe, G.T., Almuhtaram, H., Andrews, R.C. & McKie, M.J. 2022. Granular Activated Carbon Caps – A Potential Treatment Barrier for Drinking Water Cyanotoxins. *Journal of Water Process Engineering*, 49. https://doi.org/10.1016/j.jwpe.2022.102977

Questions?

Email: Mike.McKie@c3water.com

HAA FP Reduction

Background	Acclimation	Warm Water Tests	Cold Water Tests	Conclusions
	l			l

Biomass Density

Background	Acclimation	Warm Water Tests	Cold Water Tests	Conclusions
------------	-------------	------------------	------------------	-------------

HAA FP Removal

34