

Cold Weather Operations

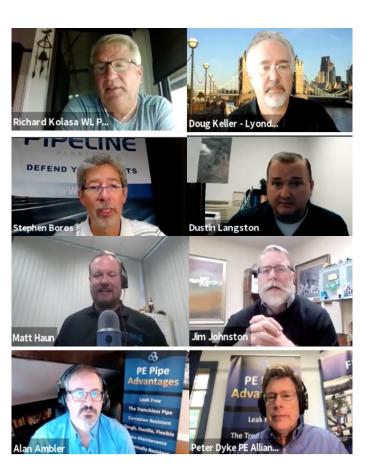
www.pepipe.org

Who is the Alliance?

PEPIPE

Social Media

Join thousands of **PE Alliance** followers!


pepipeorg
in company/alliance-for-pe-pipe
PEPipeAlliance
hdpe4710
allianceforpepipe

Free Resources

Email: DLANDY@pepipe.org

Schedule A Seminar

Project Review & Assistance

SEE SHEETS 39-42 FOR CONNECTION DETAILS EXISTING GROUND--STA=40+32 - TRANSITION FROM A=40+22 REDUCER -STA=40+36 INSTALL BUTTERFLY VALVE 191 LF 42"Ø HDPE DR11 TA=40+26 INSTALL BUTTERFLY VALVE STA=40+59 INSTALL HDPE WYE INV=57.63 LSTA-40+03 INV=58.00 LOCATE & REMOVE EXISTING 36"X24" TEE. CONNECT TO EXISTING 36" D.I. PIPE. TYPE 1 TRENCH - TYPICAL - GENERAL SURFACE RESTORATION (SEE NOTE 3) -+00 40+50 41+00 41+50

Spec Writing / Editing

REV 5/2020

SECTION 02515

HIGH DENSITY POLYETHYLENE PIPE AND FITTINGS

PART 1 GENERAL

1.01 Scope of Work

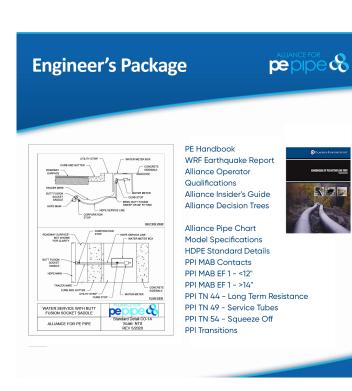
The Contractor shall provide solid wall high density polyethylene pipe (HDPE) and fittings which conform to AWWA, ASTM and other referenced documents listed in this specification with flanged and thermal but fusion joints complete in place.

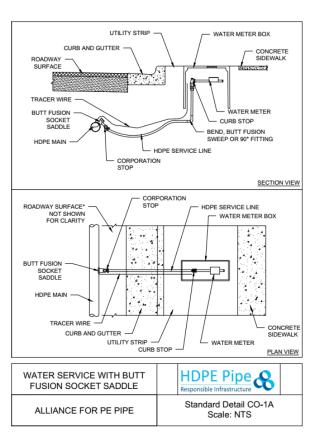
1.02 Manufacturer Qualifications

- A. Manufacturer shall have a minimum of 5 years recent experience producing HDPE pressure pipe and fittings for at least the specified sizes and <u>lengths</u> and shall be able to submit documentation of at least 5 installations in satisfactory operation for at least 5 years.
- B. HDPE pipe and fittings manufacturers and distributors shall be listed as current members of the Alliance for PE Pipe.
- C. Contractor shall have a minimum of 5 years recent experience installing HDPE pressure pipe and fittings for at least the specified pipe and fittings sizes and lengths and shall be able to submit documentation of at least 5 installations in satisfactory operation for at least 5 years.
- D. All pipe and fittings of each material type shall be furnished by the same manufacturer.
- E. The HDPE utility pipe and fittings manufacturer shall review and approve or prepare all Shop Drawings and other submittals for all components furnished under this Section.
- F. Pipe and fittings, including linings and coatings, that will convey potable water or water that will be treated to become potable, shall be certified by an accredited organization in accordance with NSF 61 as being suitable for contact with potable water, and shall comply with requirements of authorities having jurisdiction at Site.

1.03 Referenced Standards

- A. American Water Works Association (AWWA) latest edition:
 - AWWA C901 Polyethylene Pressure Pipe and Tubing, ½ Inch Through 3 Inch for Water Service


02515 - 1 Alliance for PE Pipe


WWW.PEPIPE.ORG

Free Resources

Engineer's Package

Standard Details

Email: DLANDY@pepipe.org

Case Studies

Red Deer, Alberta **Integrity Fusion Products ISCO** Industries SECOR Core & Main McElroy Manufacturing PPI - MABASTM

Sandale **Performance** Pipe WL Plastics **Pipeline Plastics** Fairbanks, AK Strongbridge **ASTM**

Contact Info

Presenters

Jim Johnston jjohnston@mcelroy.com

Rick Ponder rick@integrityfusion.com

Chris Weight c.weight@secoronline.com

Alliance

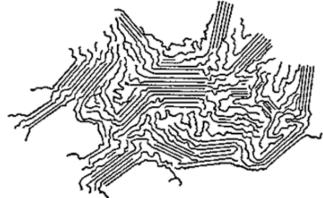
Matt Haun Richard Kolasa Peter Dyke Alan Ambler, PE Aaron Davey Dan Landy haunmr@cpchem.com rkolasa@wlplastics.com pdyke@pepipe.org aambler@pepipe.org adavey@pepipe.org dlandy@pepipe.org

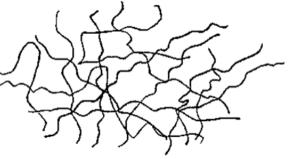
- Questions
- PDH (leave contact info in survey)
- Project Assistance
- Specification Writing
- Engineers Package

ALLIANCE FOR

Case Studies

INTEGRITY FUSION ACADEMICSION ELECTROFUSION INSTALLATION TRAINING


What is Polyethylene


Semi-Crystalline Polymer

- Molecules pack in Tight Formations
- Up to 90% Crystalline region
- Side branching effects Density
- Tensile Strength, Stiffness, Abrasion, Hardness, Chemical Resistance

Thermoplastic

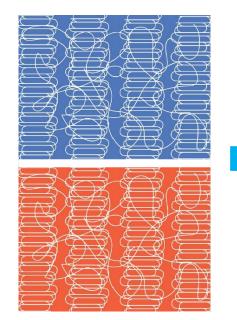
- Plastic that can be repeatedly softened by heating and hardened by cooling
- Process is reversible and repeatable
- Retains all physical properties

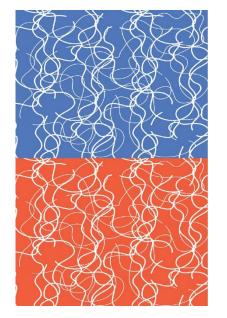
Polyethylene - Thermoplastic

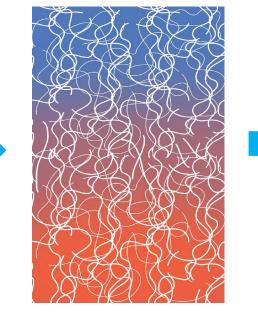
Molten

Heating

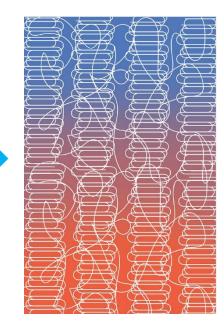
Reform




Solidified

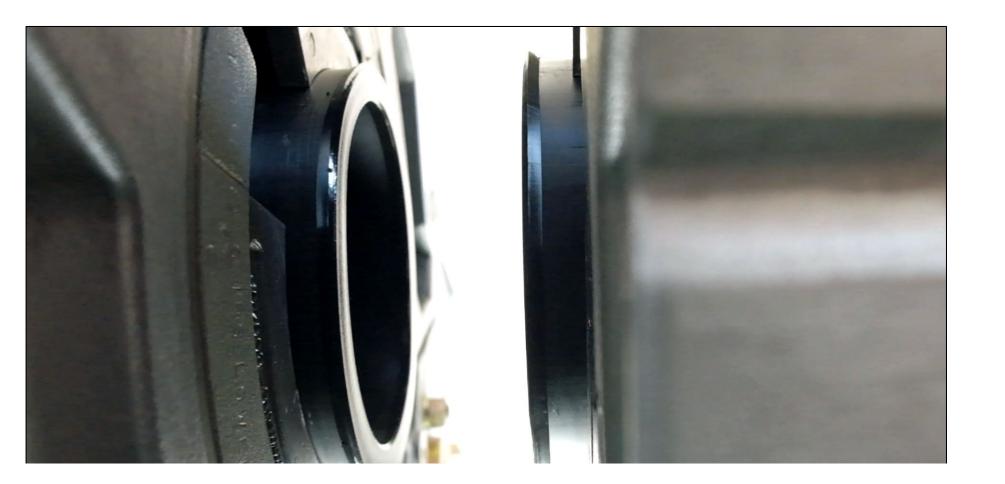


What Happens During Heat Fusion



2 HDPE surfaces at rest. HDPE molecules in a semi-crystalline state In the presence of heat the crystals disentangle

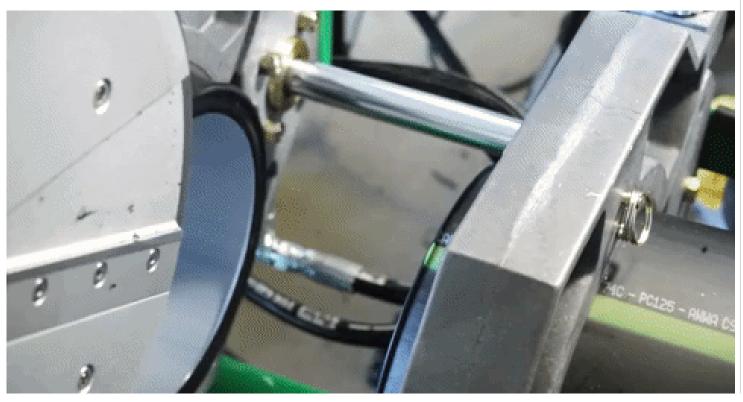
With time, the molecules travel across the boundary between the 2 surfaces



When cool, the molecules return to a semi- crystalline state across the fusion zone

ΤΙΜΕ

Strength of Fusion – Butt Fusion



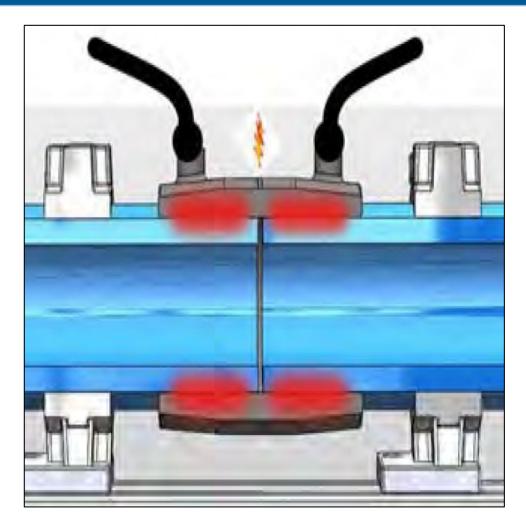
Butt Fusion – Steps to Completion

- Clean, clamp and align the pipe
- Face the pipe ends to establish clean, parallel surfaces
- Align the pipe ends
- Melt the pipe interfaces
- Join the two pipe ends together by applying the force
- Hold under pressure until the joint is cool

CLEAN IT, SHAVE IT, HEAT IT, FUSE IT!

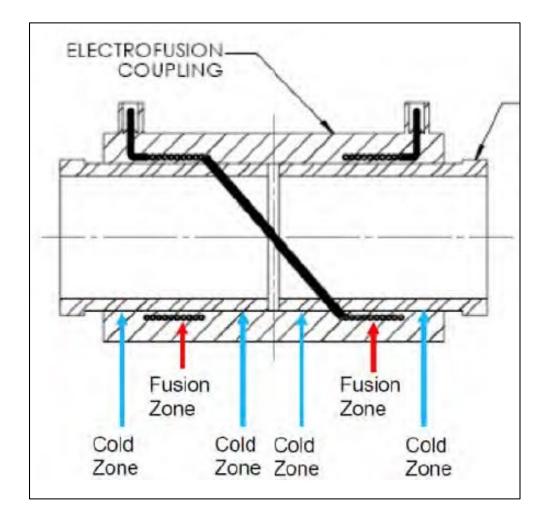
Electrofusion – Process Overview

Requires an EF Fitting


Peeled and Clean surfaces

Melt fitting - molten PE swells creating pipe contact

Pipe and Cold Zones contain melt and pressure develops


Molecules co-mingle during fusion time

Cool

Electrofusion Fittings

Electrofusion Processor

Electrofusion processor

Scans bar codes for any EF product Recognizes product parameters instantly and performs required EF times for each specific fitting

Attached EF processor leads to EF fitting

Make certain information on EF processor screen matches barcode of fitting Start electrofusion when ready

Inclement Weather

"Inclement weather" is a generic term often used to describe weather conditions that are either unsafe or undesirable for outdoor events.

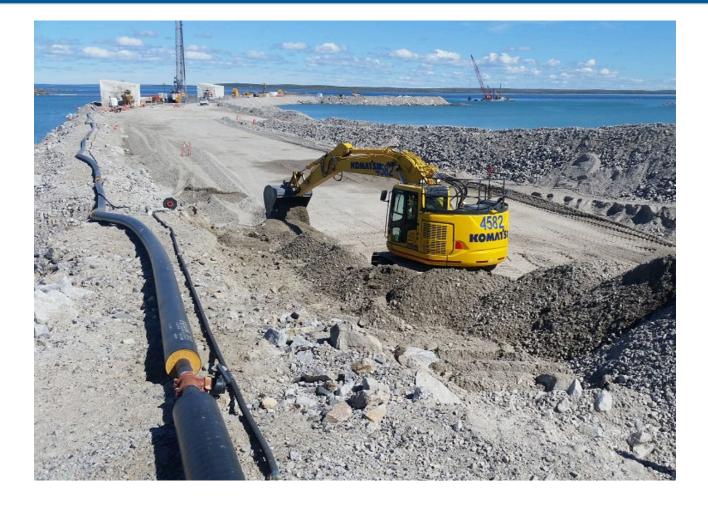
Inclement weather can come in many different forms (rain, snow, sleet, hail, cold, high wind, severe dust storm, extreme high temp).

ALLIANCE FO

Safety

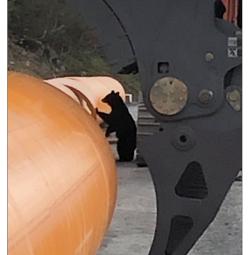
ALLIANCE FOR BEDIDE &

HDPE Behavior & Things To Know


Water Can Freeze in HDPE pipe without Damage

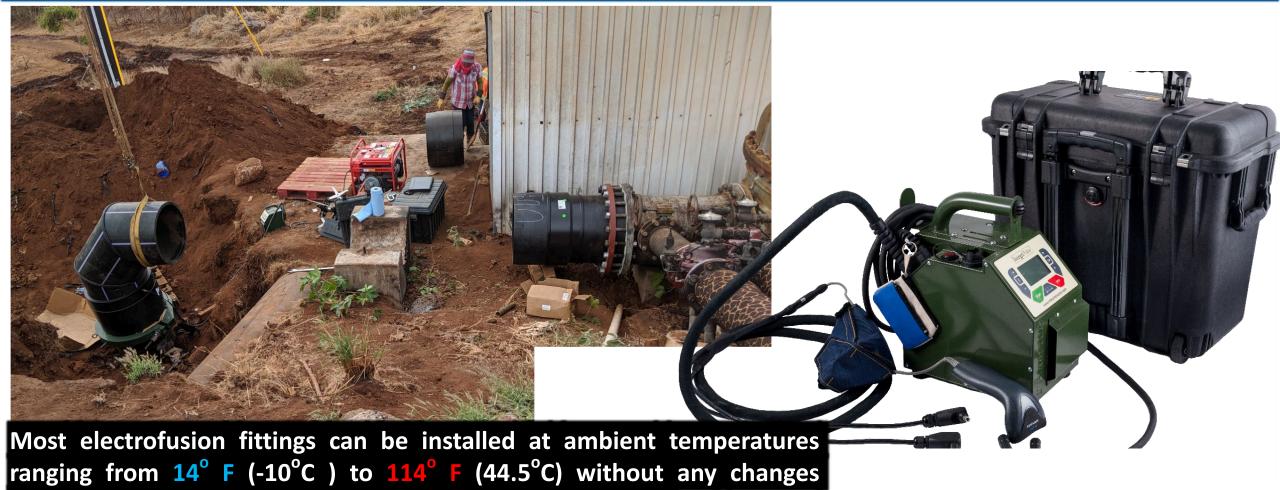
Insulated HDPE

Use Tools to Help Align the Pipe

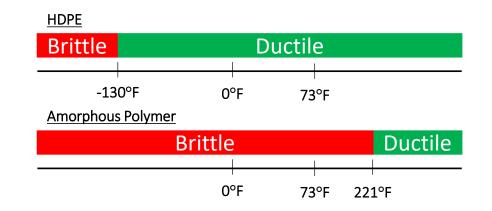

West Fork Upper Battle Creek Diversion

Innovative PE Solution

- State of Alaska, Bradley Lake Hydroelectric
- Engineer: Orion, GMC Contracting
- Project Type: raw water
- 2.3 miles DR17 63"
- Max grade of 18%, road built
- Utilized McElroy Talon
- "Toughest test yet for Talon" Vince King



What Is "Normal Operating Temperature?"

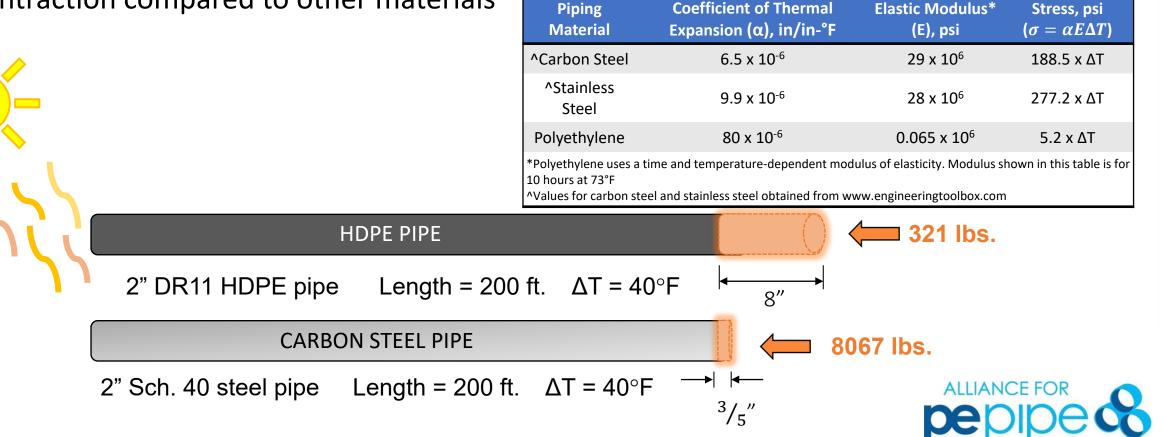

ALLIANCE FOR

needing to be made to standard fusion times or procedures)

For temps outside of this temperature range, contact the fitting manufacturer for more information.

Temperature Operating Range

- Pressure Service Temperature between -40°F to 140°F
- Glass Transition Temperature for Polyethylene is -130°F



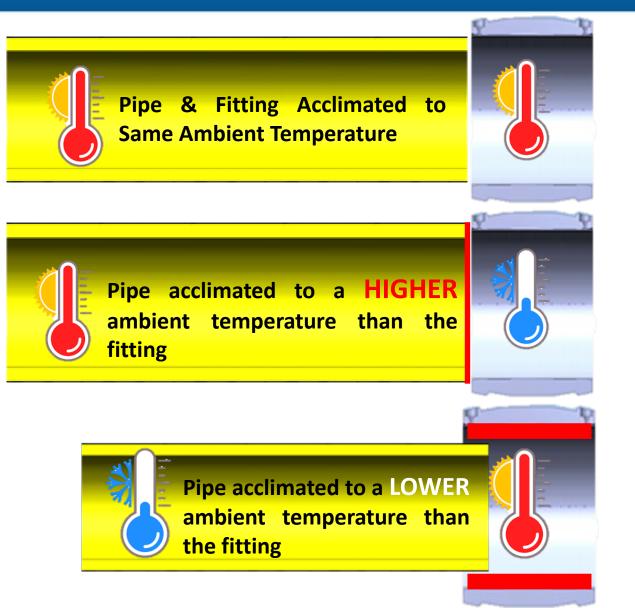
Thermal Effects – Temporary Condition

Thermal Expansion and Contraction

- PE expands and contracts at a rate of about 1 in/10°F/100 ft
- However, PE requires a much smaller force to restrain expansion and contraction compared to other materials
 Piping Coefficient of Thermal

Cold Weather

Lower temperatures require greater force to manipulate HDPE


Coiled pipe is especially affected by cold weather

Understand how your uncoiling process is managed - higher pressures, slower speeds

Safety procedures

System Equilibrium

ALLIANCE FOR PEDIDE

Maintain Equipment

Use appropriate hydraulic fluid for the temperatures and the equipment manufacturer's recommendations

Hydraulic F	luid Ch	naracte	eristic	Chart																
Fluid	cST 100F	cST 210F	V.I .	-30°F -34°C	–15°F –26°C	0°F -18°C	15°F -9°C	30°F –1°C	45°F 7℃	60°F 15℃	75°F 24°C	90°F 32°C	105°F 40°C	120°F 49°C	135°F 57°C	150°F 65°C	165°F 74℃	180°F 82°C	195°F 90°C	Range
Mobil																				
DTE 10 Excel 15	15.8	4.1	168	•																–16°F to 113°F –27°C to 45°C
DTE 10 Excel 32	32.7	6.6	164			_										-				12°F to 154°F -11°C to 68°C
DTE 10 Excel 46	45.6	8.5	164				_										_			23°F to 173°F –5°C to 78°C
DTE 10 Excel 68	68.4	11.2	156																•	37°F to 196°F 3°C to 91°C
Univis N32	34.9	6.9	164			_														12°F to 150°F –11°C to 66°C
Univis N46	46	8.5	163				_										•			24°F to 166°F –4°C to 74°C
Univis N68	73.8	12.1	160					_												39°F to 193°F 4°C to 89°C

NOTE: This chart is based on pump manufacturer recommendations of 13 to 500 cST. Temperatures shown are fluid temperatures not ambient temperatures.

Check the Generators

Know what temperature the generators providing power on site are rated for

Check the amperage and voltage output of the generator in actual cold weather conditions

Varying power can affect the performance of fusion equipment

Resources

ASTM F2620-20A^{ε1}

• ANNEX A1. COLD WEATHER PROCEDURES

Designation: F2620 – 20a $^{\epsilon 1}$

An American National Standard

RESOURCES

ASTM

Standard Practice for Heat Fusion Joining of Polyethylene Pipe and Fittings¹

This standard is issued under the fixed designation F2620; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

 ϵ^1 NOTE—Table 2 was editorially corrected for clarity in October 2021.

ANNEXES

(Mandatory Information)

A1. COLD WEATHER PROCEDURES

MAB Guidelines for Fusing HDPE Pipe in Cold & inclement Weather

Municipal Advisory Board

Established May 1, 2008 at the University of Texas, Arlington

PLASTIC PIPE INSTITUTE MUNICIPAL ADVISORY BOARD

MAB Guidelines for Fusing HDPE Pipe in Cold and Inclement Weather

(MAB-8 2022)

https://plasticpipe.org/common/Uploaded%20files/Technical/MAB-08.pdf

Cold Weather Fusion: MAB-08 Procedure

- 1. Remove snow, ice and melted ice from pipe
- 2. HDPE has reduced impact resistance in cold weather Don't drop pipe
- 3. Provide adequate enclosures without excessive heat
- 4. Plug or cap opposite ends of pipe
- 5. Ensure equipment is free of ice and snow

- 6. Ensure ID & OD are clear of moisture
- 7. Shield fusion area with an equipment shelter
- 8. Use portable space heaters. Direct fired heaters are not allowed in confined spaces
- 9. Preheat pipe
- 10. Keep heating tool in an insulated container between fusions

Golden Rule #1

BE PATIENT!

Golden Rule #2

Change the conditions, not the procedure

Remove snow, ice, and melted ice from pipe

Remove any ice, frost, snow, dirt or contamination from the pipe and machine <u>before</u> loading into the machine

Clean and dry OD and ID of pipe in fusion zone

Examine Pipe

• Inspect for damage

 Cut out any compromised areas

Don't Drop The Pipe

HDPE has reduced impact resistance in cold weather

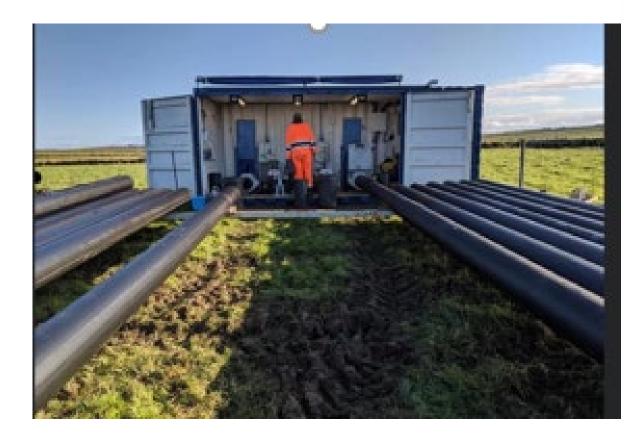
 As always, handle with care to ensure pipeline integrity

• HDPE has the most impact resistance

Provide Adequate Enclosures

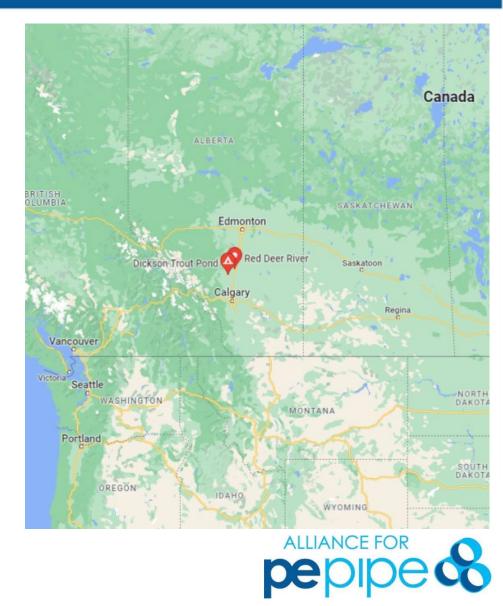
• Without excessive heat

Protect The Fusion Area


Shield your fusion area from wind, dirt and moisture

- Portable shelter
- Trailer
- Canopy

Protect The Fusion Area


Protect The Fusion Area

Central Alberta Regional Wastewater System, Red Deer

- 10 km pipeline in Red Deer
- Larger project for 150,000 population growth
- HDD and open cut to be used to install
- *Knibb Developments was the contractor for this project*

Central Alberta Regional Wastewater System, Red Deer

Previously attempted to use just tents

Opted for McElroy QuickCamp system 3300' 32" HDPE was completed in 20 days

McElroy QuickCamp

Lighted, insulated and temperature controlled Unfolds to 21'8"x24'7" shelter that has room for office or storage

McElroy QuickCamp

Use Tents, Tarps and Warm Air

Reels and/or stick pipes can be tented with tarps

Supply warm air from an indirect fired heater

Plug Opposite Ends of Pipe

Ensure Equipment is Free of Ice and Snow

ALLIANCE FOR PEDIDE

Ensure ID & OD are clear of moisture

Use Portable Heaters

Salamander

Infrared heaters

Pre-Heat Pipe

Preheat pipe in insulated area

Do not heat pipe to great than 120° F (49° C)

Use multiple heaters or heating elements if necessary

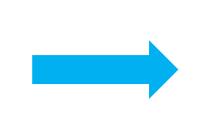
ALLIANCE FOR BOIDE

Protect the Heater

- Keep heater in insulated bag or protective device until ready
- Check heater temperature
 before every fusion

McELROY

Summary: Cold Weather Considerations


- Don't Drop The Pipe
- Provide adequate enclosures
- Use Tents, Tarps, and Warm Air If Possible
- Protect The Fusion Zone
- Use Portable Space Heaters

ALLIANCE FOR

- Pre-Heat Pipe
- Keep Heating Tool in Insulated Container

Summary: Extreme Heat Considerations

- Understand thermal effects
- Provide adequate enclosures
- Protect The Fusion Zone
- Keep Heating Tool in Insulated Container

Summary: Windy Considerations

- Cap the pipe ends to protect fusion zone
- Provide adequate enclosure to protect fusion zone
- Keep Heating Tool Insulated
 Container

Summary: Precipitation Considerations

- Remove snow, ice & melted ice from pipe
- Ensure equipment is free of ice and snow
- Provide adequate enclosures
- Protect The Fusion Zone
- Ensure ID and OD are clear of moisture
- Keep Heating Tool in Insulated
 Container

Contact Info

Presenters

- Jim Johnston jjohnston@mcelroy.com
- **Rick Ponder** rick@integrityfusion.com
- **Chris Weight** c.weight@secoronline.com

Alliance

Matt Haun Richard Kolasa Peter Dyke Alan Ambler, PE Aaron Davey Dan Landy haunmr@cpchem.com rkolasa@wlplastics.com pdyke@pepipe.org aambler@pepipe.org adavey@pepipe.org dlandy@pepipe.org

- Questions
- PDH (leave contact info in survey)
- Project Assistance
- Specification Writing
- Engineers Package

ALLIANCE FOR

Case Studies