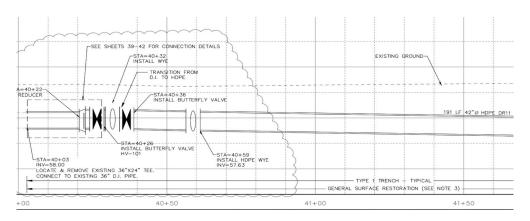


HDPE 301


Free Resources

dlandy@pepipe.org

Schedule A Seminar

Project Review & Assistance

Spec Writing / Editing

REV 5/2020

SECTION 02515

HIGH DENSITY POLYETHYLENE PIPE AND FITTINGS

PART 1 GENERAL

1.01 Scope of Work

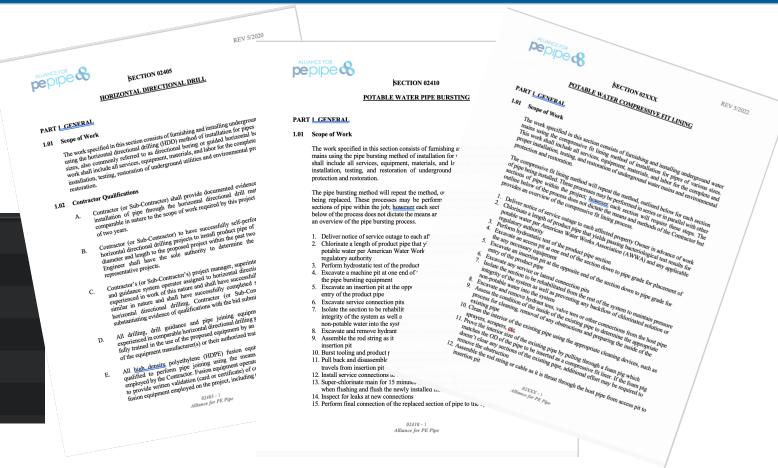
The Contractor shall provide solid wall high density polyethylene pipe (HDPE) and fittings which conform to AWWA, ASTM and other referenced documents listed in this specification with flanged and thermal but fusion joints complete in place.

1.02 Manufacturer Qualifications

- A. Manufacturer shall have a minimum of 5 years recent experience producing HDPE pressure pipe and fittings for at least the specified sizes and <u>lengths</u>, and shall be able to submit documentation of at least 5 installations in satisfactory operation for at least 5 years.
- B. HDPE pipe and fittings manufacturers and distributors shall be listed as current members of the Alliance for PE Pipe.
- C. Contractor shall have a minimum of 5 years recent experience installing HDPE pressure pipe and fittings for at least the specified pipe and fittings sizes and lengths and shall be able to submit documentation of at least 5 installations in satisfactory operation for at least 5 years.
- All pipe and fittings of each material type shall be furnished by the same
- The HDPE utility pipe and fittings manufacturer shall review and approve or prepare all Shop Drawings and other submittals for all components furnished under this Section.
- Pipe and fittings, including linings and coatings, that will convey potable water or water that will be treated to become potable, shall be certified by an accredited organization in accordance with NSF 61 as being suitable for contact with potable water, and shall comply with requirements of authorities having jurisdiction at Site.

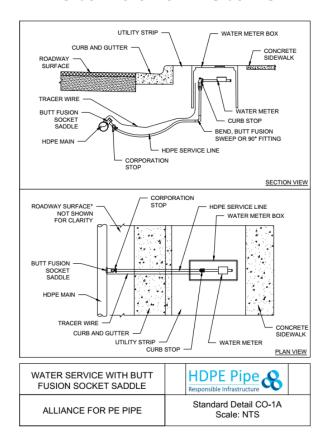
1.03 Referenced Standards

- A. American Water Works Association (AWWA) latest edition:
 - AWWA C901 Polyethylene Pressure Pipe and Tubing, ½ Inch Through 3
 Inch for Water Service


02515 - 1 Alliance for PE Pipe

dlandy@pepipe.org

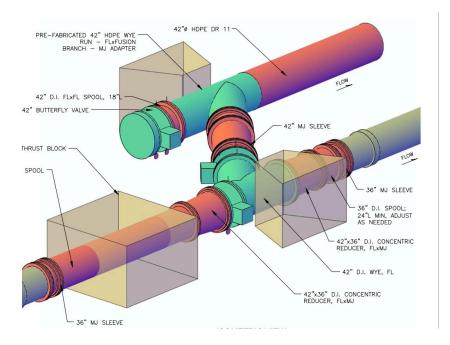
- 2. ExcavationBackfillandCompaction.docx
- 3, PolyethylenePipeandFittings.docx
- 4. PipeBursting.docx
- 5. HorizontalDirectionalDrill.docx
- 6. CompressiveFitlining.docx

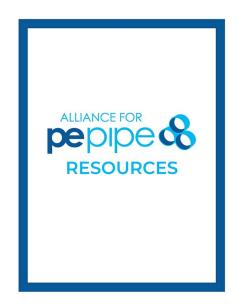


Free Resources

Engineer's Package

Standard Details


Case Studies

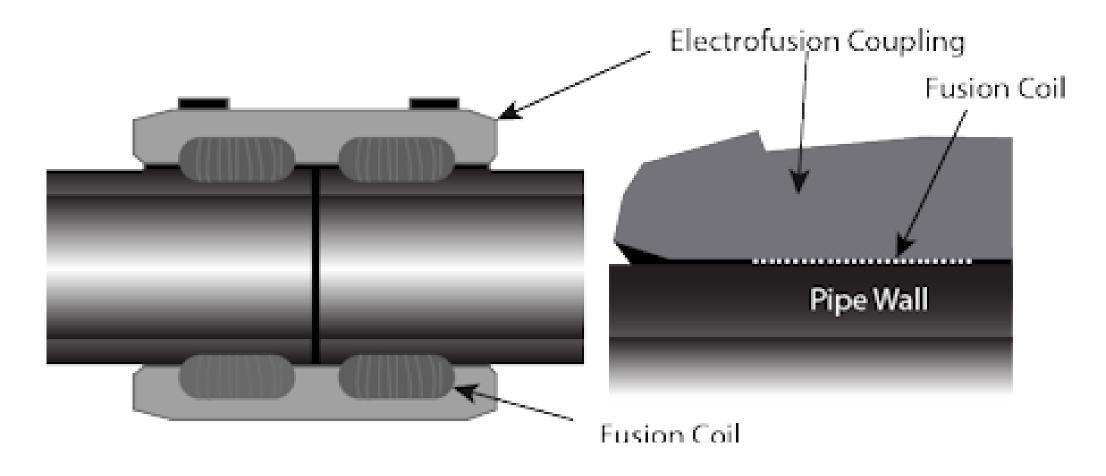


Material

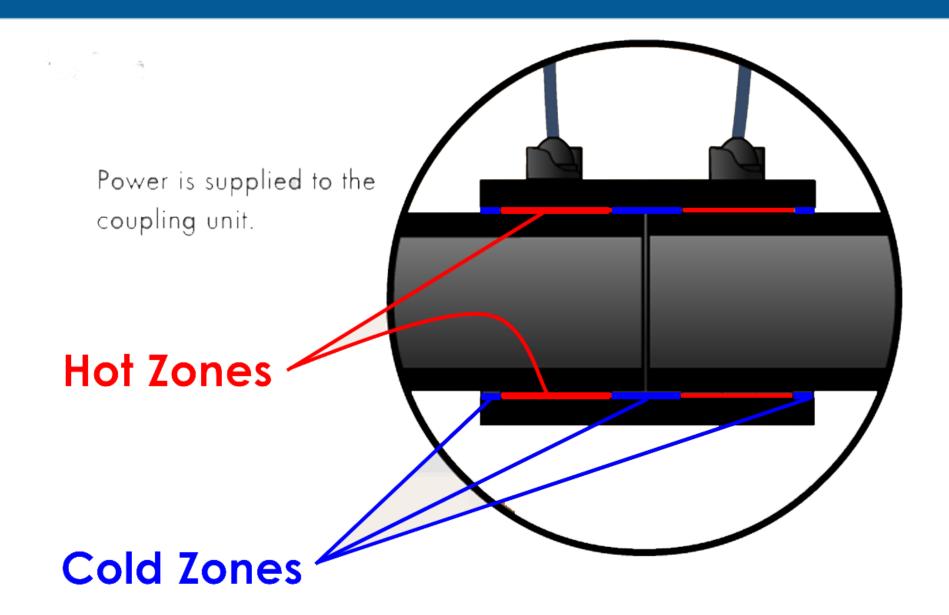
Installations & Design

Resources

Material

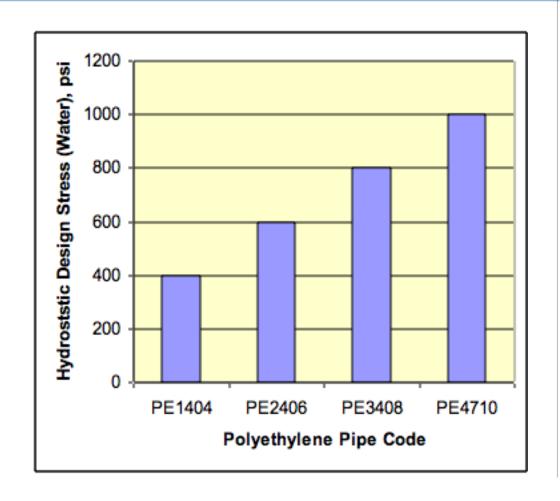

Material

Butt Fusion Forensics



Electrofusion

Electrofusion

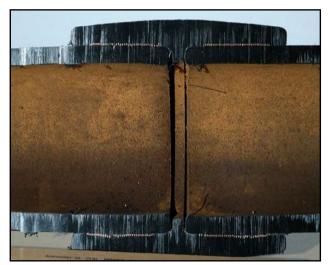

PE Material Designation

Slow Crack Growth (SCG)
Resistance >500 PENT hours

Hydrostatic Design Stress (HDS)
1000 psi

Steel and DIP with Age

Flow restriction and velocity increase


Flow Design

	12" CL350 Cement- Lined Ductile Iron Pipe	12" Steel Pipe Sch. 40	12" DIPS DR 17 HDPE Pipe
Wall Thickness (in.)	0.28	0.41	0.78
Inside Diameter (in.)	12.64	11.94	11.55
Hazen Williams Coefficient	120	100	150
Flow (GPM)	996	710	989
Flow % Difference	+0.6%	-28%	-

Steel pipe 9 years Steel pipe 6 months

HDPE Water Pipe – 41 years

Chlorine & Chemical Resistance

PPI TN-44 and TN-49

- Defines Pipe Disinfectant Index (PDI) calculation
- PDI estimates PE pipe's long-term resistance to chlorine oxidation for a particular potable water system
 - PDI ≥ 1 ~ 50 years or more resistance to chlorine
 - PDI ≥ 2 ~ 100 years or more resistance to chlorine

$$PDI = F_{Temp}F_{Press}F_{WQ}F_{Mat}F_{Size}$$

 F_{Temp} ~ Average Annual Water Temperature F_{Press} ~ Operating Pressure, Pressure Class of PE Pipe F_{WQ} ~ ppm Chlorine Residual, pH of Water F_{Mat} ~ CC rating of PE Pipe (Chlorine Resistance Rating) F_{Size} ~ OD of Pipe

Calculator #1: Chlorine Resistance

Pipe Disinfectant Index (PDI)

Inputs	Average	Aggressive	Aggressive
Average Annual Temperature	57°F	75°F	80°F
Water pH	7.75	6.5	6.5
Disinfectant Residual (ppm)	2	4	4
Working Pressure	70 psi	90 psi	100 psi
Pipe OD	4" IPS	4" IPS	4" IPS
Pipe DR	DR21 (PC100)	DR17 (PC125)	DR11 (PC200)
CC Rating	CC2	CC3	CC2
PDI*	9.9	2.2	2.5
Predicted Oxidative Resistance	≥100 years	≥100 years	≥100 years

Key Takeaway:

Chlorine disinfectants in potable water systems are rarely an issue for the latest PE4710 piping resins

Pressure Rating

DR	PE4710 PRESSURE RATING
7	333
9	250
11	200
13.5	160
17	125
21	100
26	80
32.5	63

$$PR = \frac{2 * HDS * f_E * f_T}{DR - 1}$$

Pressure Rating

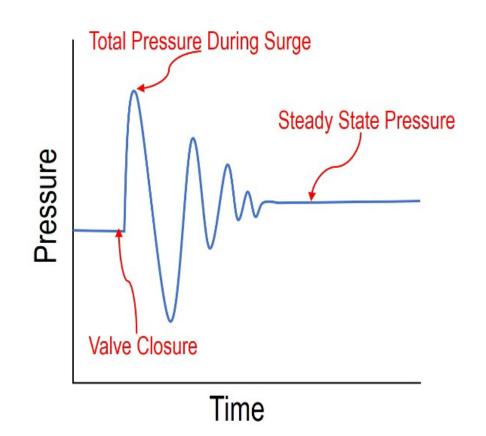
$$PR = \frac{2 * HDS * f_E * f_T}{DR - 1}$$

Average Annual Operating Temperature	Temperature Compensating Factor (f _⊤) for PE4710
≤ 80°F (27°C)	1.0
≤ 90°F (32°C)	0.9
≤ 100°F (38°C)	0.8
≤ 110°F (43°C)	0.8
≤ 120°F (49°C)	0.7
≤ 130°F (54°C)	0.7
≤ 140°F (60°C)	0.6

f∈	Media and Environment Conditions
1.00	Internal liquids, gases and external soils or liquids that are chemically benign to polyethylene such as water (potable, raw, grey, waste, reclaimed), sewage, salt/brine solutions, glycol/antifreeze solutions, alcohol; dry natural gas ^A , landfill gas, nitrogen, air, oxygen, carbon dioxide, hydrogen sulfide
0.64	US – Buried distribution, gathering or transmission systems for US Federal and State regulated dry fuel gases such as natural gas, LP gas, propane, butane, landfill gas (use an HDS value of 800 psi per CFR Title 49 Part 192 for pressure calculations using equation 1)
0.80	Canada Only — Buried distribution, transmission or gathering systems for Canadian Federal and Provincial regulated fuel gases such as natural gas, LP gas, propane, butane, landfill gas
0.50	multi-phase fluids, wet natural gas, liquids or groundwater in or around the pipe having a 2% or greater concentration of permeating or solvating chemicals such as hydrocarbon liquids (gasoline, fuel oil, kerosene, crude oil, diesel fuel, jet fuel)

Surge Pressures

Pressure Surge

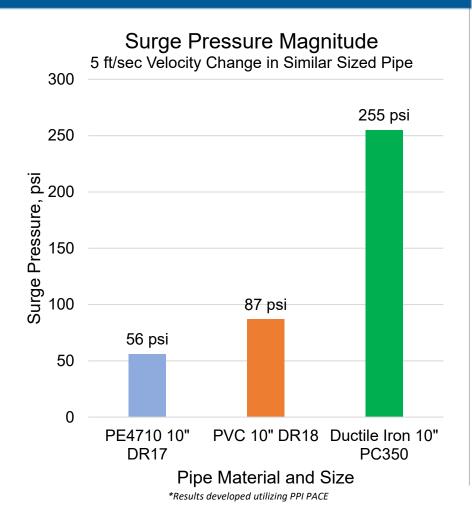

- Temporary fluctuation in operating pressure
- Caused by a rapid change in velocity
- Surge pressure capabilities of PE pipe are in reference to transient surges
 - Caused by flow velocity changes
 - Last a few seconds

Types of Surge Pressures

- Recurring
- Occasional

Design Conditions for Surge Pressures:

- Surge Pressure Magnitude
- Surge Pressure Allowance
- Fatigue Resistance



Surge Pressures

Surge Pressure Magnitude

- Two factors that affect surge pressure magnitude:
 - Velocity change
 - Material's modulus of elasticity
- Same velocity change ≠ same surge pressure
- Surge pressure magnitude depends on modulus of material type:
 - EPE = 150,000 psi
 - EPVC = 400,000 psi
 - EDI = 24,000,000 psi

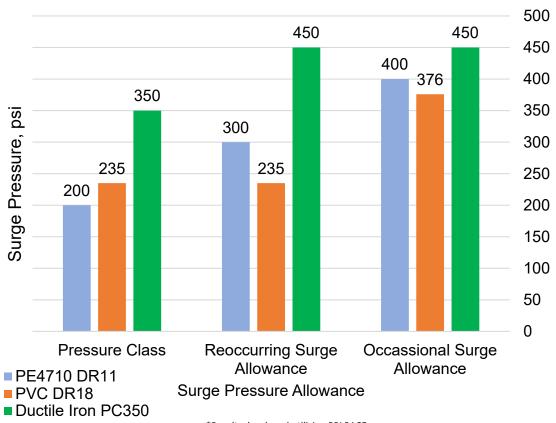
Lower Modulus = Lower Surge Pressures

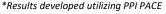
Surge Pressures

Surge Pressure Allowance

HDPE:

- Recurring = 1.5 * PC
- Occasional = 2 * PC


PVC:


- Recurring = 1.0 * PC
- Occasional = 1.6 * PC

Ductile Iron:

- Recurring = $PC + 100 \ psi$
- Occasional = $PC + 100 \ psi$

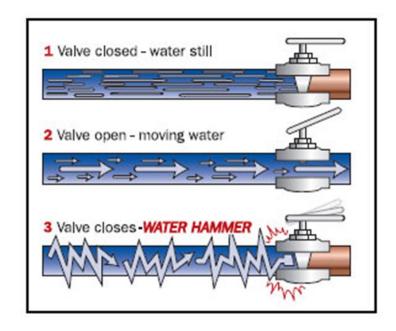
Surge Pressure Allowance

Cyclic Fatigue

Fatigue Resistance

 Fatigue due to excessive surge pressure events can become a limiting factor for a pipe's allowable pressure rating and surge capabilities

HDPE


Can handle 15,000,000+ cycles without fatigue failure

Ductile Iron

Not factored into design

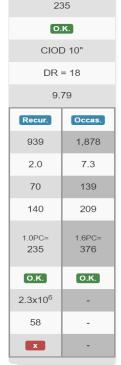
PVC

Can limit allowable operating pressure and flow velocity

Calculator #2: PPI PACE

http://ppipace.com

Pipe Selection	Input Parameters			
HDPE (PE4710) Pipe	Pipeline Length [ft]	1000		
Sizing System Nominal Size Dimension Ratio DIPS 12" 11 (PC200)	Design Velocity for Recurring Surge [ft/s]	4	0	
Ductile Iron Pipe	Design Velocity for Occasional Surge [ft/s]	8	6	Step 1: Inputs
Sizing System Nominal Size Thickness DIPS 10" 0.26 (PC350)	Working Pressure [psi]	70	0	
	Anticipated Recurring Surges [per day]	55	0	
PVC (PVC12454-B) Pipe Sizing System Nominal Size Dimension Ratio	Temperature [°F]	57	0	
CIOD - 10" - 18 (PC235) -	Minimum Design Life [years]	100	0	


Calculator #2: PPI PACE

http://ppipace.com

Result
Material
Standard
Pipe Rating at 57°F (PC x F _T)
Working Pressure (no surge) Check
Nominal OD [in]
Dimension Ratio (DR) or Thickness (TH)
Average Inside Diameter (ID) [in]
Flow Rate (Q) [gpm]
Head Loss [psi]
Surge Pressure (P _S) [psi]
Total Pressure (P _T = WP + P _S) [psi]
Allowable Total Pressure During Surge (P _A) [psi]
Surge Pressure Check (P _T ≤ P _A)
Number of Cycles To Failure
Design Fatigue Life [years; with SF = 2]
Design Fatigue Life Check

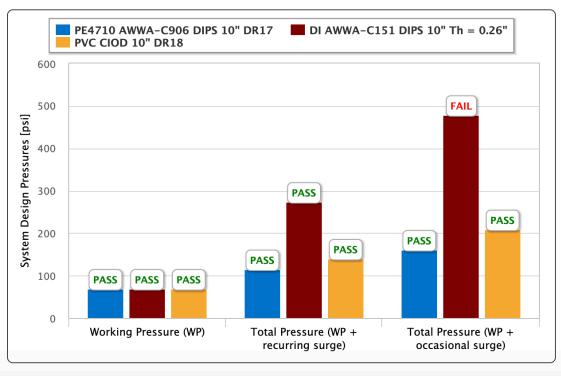
PA	ss		FA	V	
PE 4710)	
AWWA-C906			AWWA	١.	
125			3!	5	
О.К.			0.	ŀ	
DIPS	3 10"		DIPS		
DR	= 17		TH =	:	
9.72			10.4	.6	
Recur.	Occas.		Recur.	ſ	
924	1,849		1,070	l	
2.0	7.4		2.1		
45	90		204		
115	160		274		
1.5PC= 188	2.0PC= 250		PC+100= 450		
O.K.	O.K.		O.K.		
9.2x10 ⁸ -			-		
≥100	-		-		
O.K.	-		-		

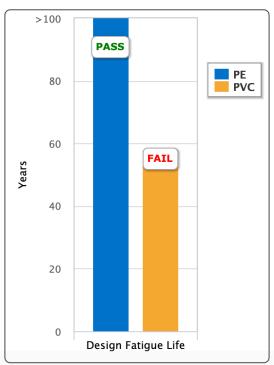
	DI		PVC			
AWWA-C151		AWWA-C900				
3	50		235			
0	K.		О.К.			
DIPS	3 10"		CIOD 10"			
TH =	0.26		DR	= 18		
10.4	6 6		9.	79		
Recur.	Occas.		Recur.	Occas.		
1,070	2,140		939	1,878		
2.1	7.7		2.0	7.3		
204	4 408		70	139		
274	478		140	209		
C+100= 450	PC+100= 450		1.0PC= 235	1.6PC= 376		
O.K.	х		O.K.	O.K.		
-	-		2.3x10 ⁶	-		
			58	-		
			x	-		

Step 2: Design

Calculator #2: PPI PACE

http://ppipace.com


PE4710 AWWA-C906
DIPS 10" DR17
Pass


Ductile Iron AWWA-C151
DIPS 10" Thickness = 0.26"

Fail

PVC AWWA-C900 CIOD 10" DR18

Input Summary: Pipe length = 1000 ft | Resin = PE 4710 | Working Pressure = 70 psi | Recurring Flow Velocity = 4 ft/s | Occasional Flow Velocity = 8 ft/s |
Temperature = 57°F | Design Life = 100 years | Anticipated Recurring Surges Per Day = 55

Step 3: Results

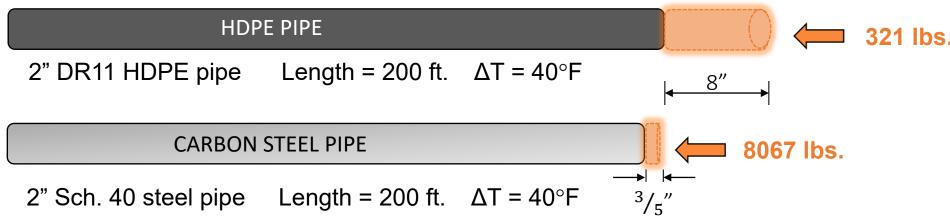
Installation Considerations


Expansion / Contraction: Thermal

Thermal Expansion and Contraction

• PE expands and contracts at a rate of about 1 in/10°F/100 ft

However, PE requires a much smaller force to restrain expansion and

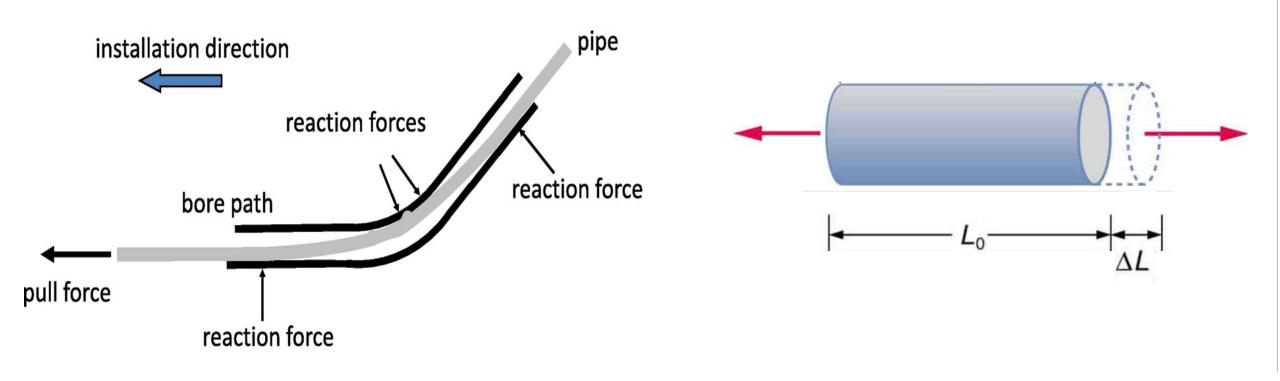

contraction compared to other materials

Piping Material	Coefficient of Thermal Expansion (α), in/in- $^{\circ}$ F	Elastic Modulus* (E), psi	Stress, psi $(\sigma=lpha E \Delta T)$
^Carbon Steel	6.5 x 10 ⁻⁶	29 x 10 ⁶	188.5 x ΔT
^Stainless Steel	9.9 x 10 ⁻⁶	28 x 10 ⁶	277.2 x ΔT
Polyethylene	80 x 10 ⁻⁶	0.065×10^6	5.2 x ΔT

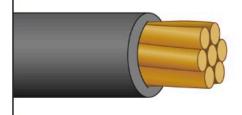
^{*}Polyethylene uses a time and temperature-dependent modulus of elasticity. Modulus shown in this table is for 10 hours at 73°F

[^]Values for carbon steel and stainless steel obtained from www.engineeringtoolbox.com

System Equilibrium



Expansion / Contraction: Mechanical

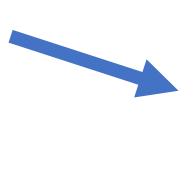


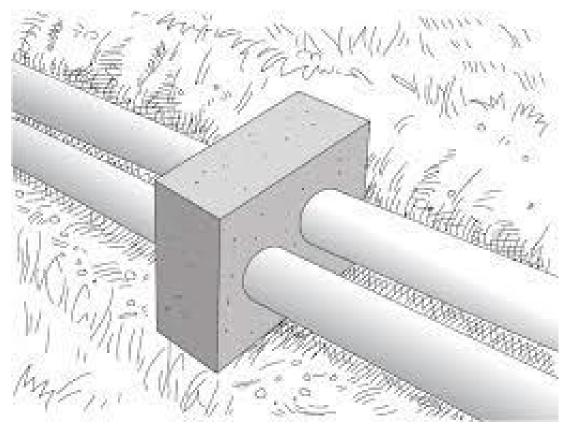
Expansion / Contraction: Mechanical

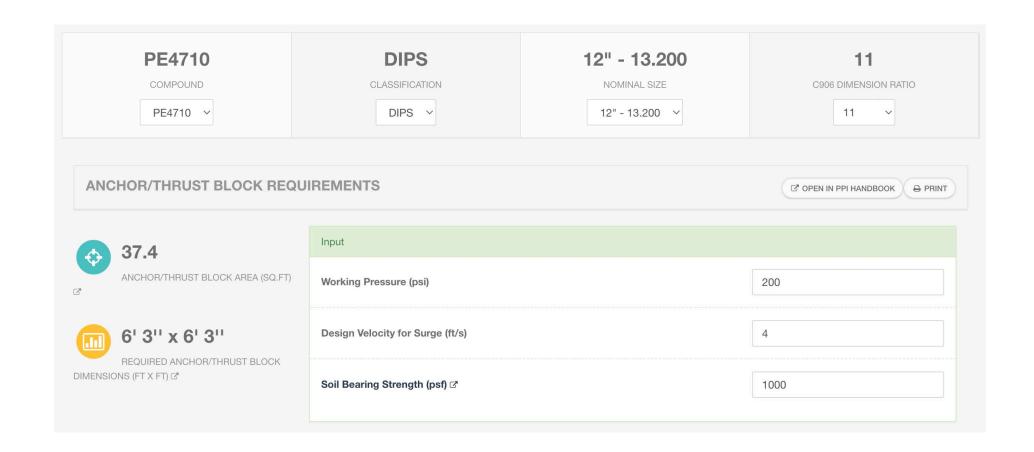
Tracer Wire

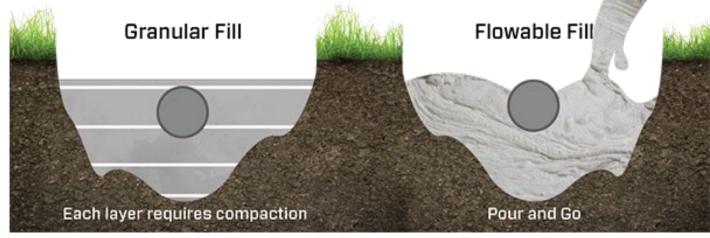
Horizontal Directional Drilling Wire (HDD)

Utility, Specialty




Thrust Blocks




Calculator #3: Thrust Blocks

Flowable Fills

Pressure Testing

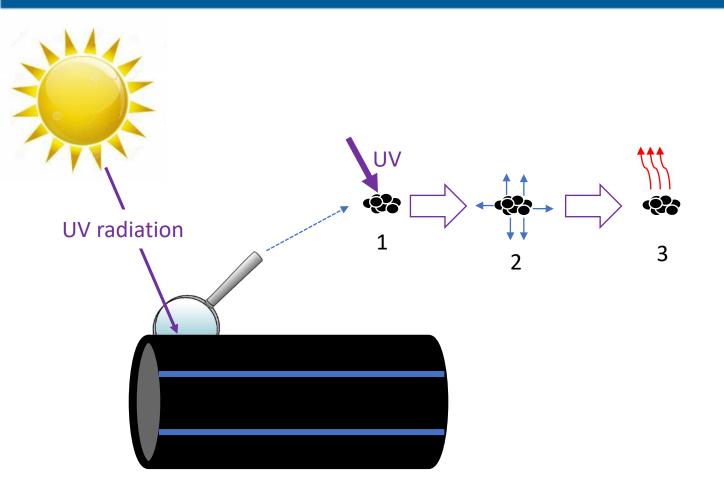
Guidance for Field Hydrostatic Testing Of High Density Polyethylene Pressure Pipelines: Owner's Considerations, Planning, Procedures, and Checklists TN-46/2013a

UV Radiation

Figure 1: Surface discoloration of PVC pressure

Carbon Black

Goal: Protect polymer chains on a molecular level

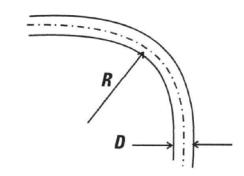

Solution: 2% carbon black protects from UV radiation for an indefinite time

UV Radiation

- 1. UV radiation strikes particles
- 2. Particles react to the UV energy by vibrating
- 3. Particles are constrained, and the vibrations are converted to heat

Eliminate Unnecessary Fittings

Bend Radius

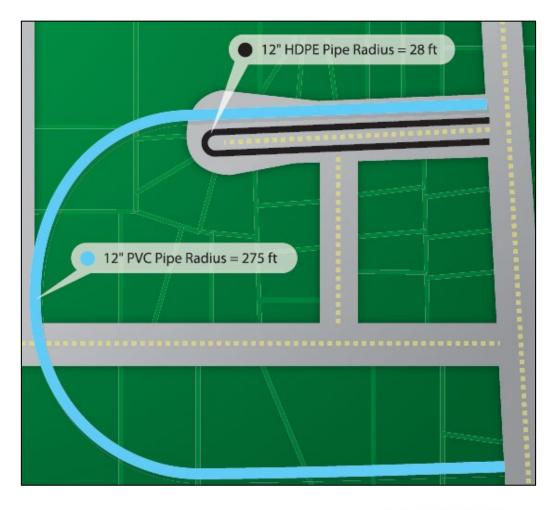

- Bend radius of PE pipe is limited by
 - Bending strain capacity
 - Resistance to kinking\

Longitudinal Wall Strain

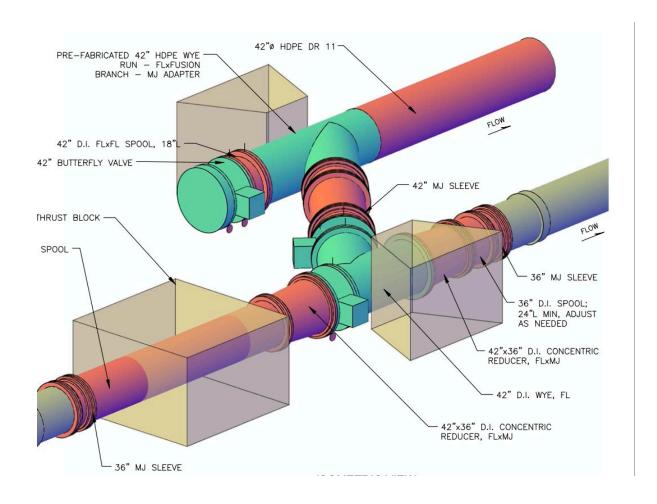
- Bend radius guidance limits longitudinal wall strain in the pipe to 2%
- 2% longitudinal wall strain = bending ratio of 20

Kinking

- Longitudinal bending induces ovality
- Thicker wall pipes have higher kink resistance
- Minimum bend radius decreases as pipe increases thickness (and DR)


Pipe DR	Minimum Long-Term Bending Radius
≤ 9	20 x OD
11 – 13.5	25 x OD
17 - 21	27 x OD
26	34 x OD
32.5	42 x OD
Fitting or flange present in any bend	100 x OD

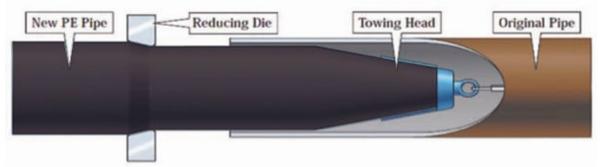
Bend Radius



Installations & Design

Minor Installation Methods

Above Ground / At Grade


Plowing

Marine

Compression Fit

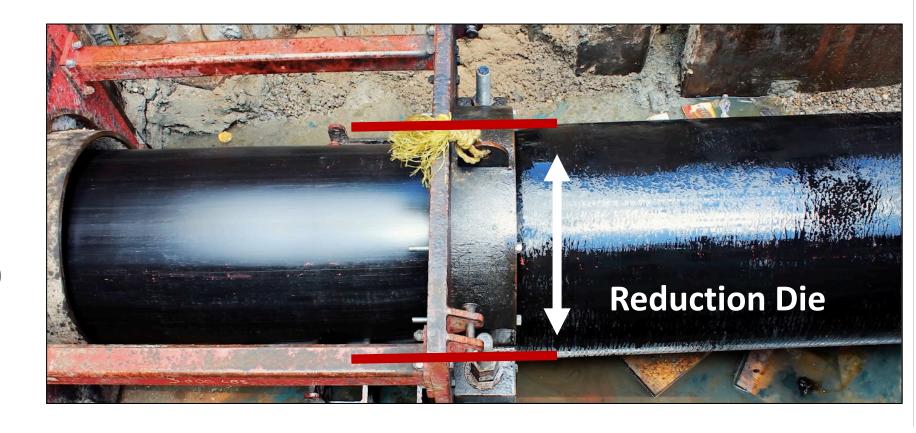
Major Installation Methods

Open Cut

HDD

Major Installation Methods

Pipe Bursting



Sliplining

Minor Method #1 - Compression Fit

- No annulus
- Reduces pipe OD
- Host pipe Liner
- Structural (or not)
- 92% less Cut

Compression Fit

Compression Fit

Valuable when a project cannot utilize HDD.

1. Borepath has no structural integrity

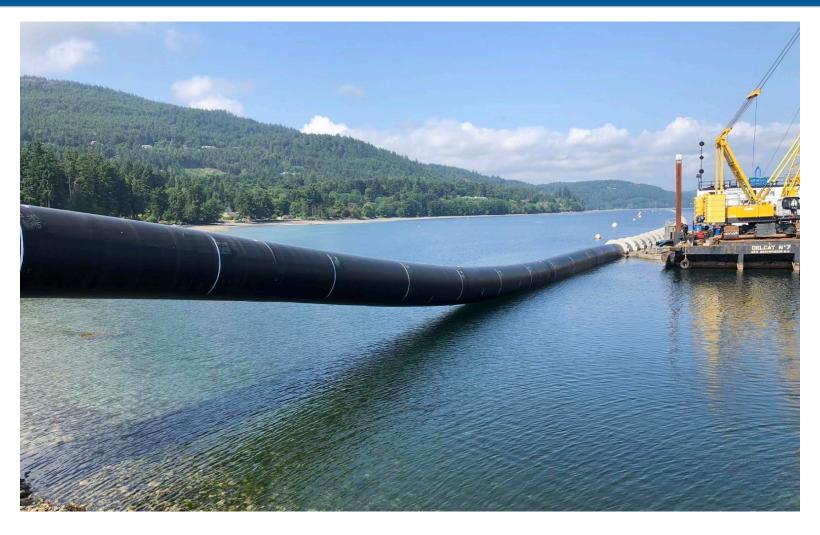
- Marsh
- Swamp Land
- Bayou

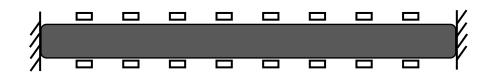
2. Pipeline is too long for a drill

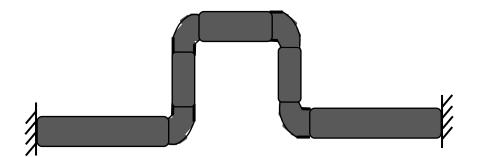
- Connecting islands
- Long outfalls

- Buoyant
- Almost unlimited lifetime underwater

Deliver to Land or Sink It







Minor Method #3 - At Grade / Bypass

Key: Control Thermal Effects

2) Conventional Expansion Loop

3) Lateral Deflection Expansion Loop

Minor Method #3 - At Grade / Bypass

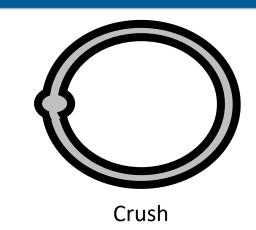
Minor Method #4 – Plow In

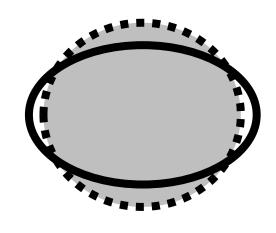
Great For Rural Water

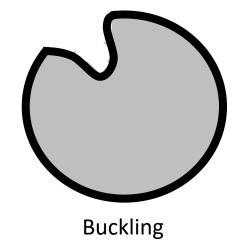
Minor Method #4 – Plow In

Minor Method #4 – Plow In

Open Cut Design

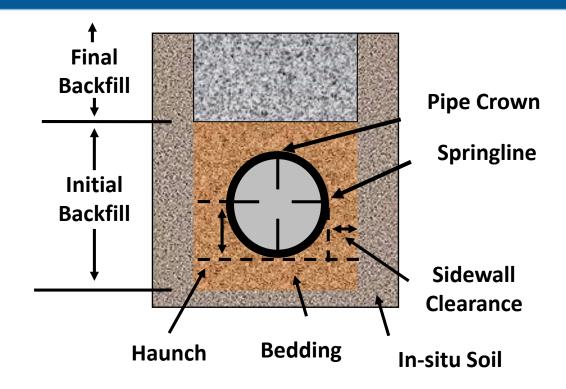





Terminology of Pipe Embedment Materials

The flexible pipe and pipe embedment materials must do the following:

- Resist deflection of the pipe material
- Resist wall buckling for the constrained pipe
- Resist allowable external pressure for unconstrained pipe
- Meet allowable stress for wall buckling


M55 Design Window

AWWA M55 Basic Window

 Require no design calculations for deflection, crush, or buckling

Design Window Requirements:

- Stress-rated PE pipe material
- No surcharge loads or ground water
- E' of at least 1000 psi for both embedment material and native soil
- Unit weight of native soil less than 120 pounds per cubic foot
- DR and burial depth limitations (shown in table)

DR	Min. Depth of	Min. Depth of	Maximum
	Cover with H20	Cover without	Depth of
	Load	H20 Load	Cover
7 - 21	3 ft.	2 ft.	25 ft.

Calculator #4: M55 Excel Macro

	-	PE Pipe I	Design and Installation
Equation 5-	-2, page 48		
$\frac{\Delta \gamma}{D_M} = \frac{k(T_I)}{3(D_E)}$ $W_E = \frac{wH}{144}$	$\frac{2E}{(R-1)^3} + 0.0$	<i>W_S</i>))61 <i>E'</i>	
Table 5-3 Pr	ovides <i>WL</i> :	at vario	us depths
4' Depth of	Cover Live	Load D	R17
Δγ/DM	0.41%		vertical deflection, %
D_M	6.494		mean diameter
D_{0}	6.900	inch	outside pipe diameter
t	17		pipe wall thickness
k	0.10		bedding constant
T_L	1.00		time-lag factor
W_E	3.33	psi	earth load pressure
W_L	4.20	psi	H20 live loads
W_S	0.00	psi	surcharge pressure
E	130000	psi	apparent modulus of elasticity of pipe material *See note
DR	17		dimension ratio
E'	1000	psi	modulus of soil reaction *Class 3 compacted
Н	4	ft	depth of cover
w	120	lb/ft3	weight of soil
Pipe stiffnes	s factor	21.16	$\frac{2E}{3(DR-1)^3}$
Soil stiffness factor 61.00		61.00	

pressure applications, if the pipe stiffness factor is more than 25% of the soil stiffness factor,

use a long term modulus elasticity value of 28,000

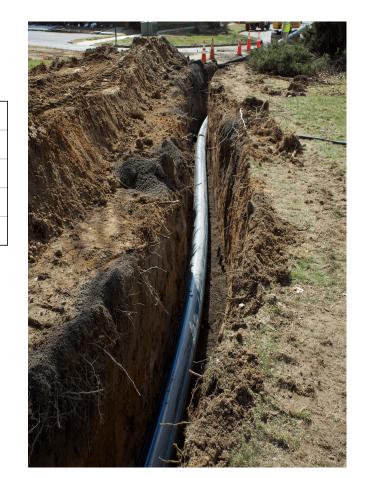
HDPE Wall	l Buckling for	Constra	nined Pipe		
	-		esign and Installation		
Equation 5	Equation 5-6, page 55				
$P_{CA} = \frac{5.6}{N}$	$\frac{55}{4} \sqrt{R_b B' E' \frac{1}{1}}$	E 2(DR —	1)3		
	$+ P_L + P_{ES} +$				
$R_b = 1 -$	$-0.33 * \frac{H_w}{H}$ 1 $4_{e^{065H}}$				
$B' = \frac{1}{1 + \epsilon}$	1 4 _e 065H				
4' Depth o	f Cover No G	roundwa	ater Wall Buckling		
P_{CA}	30.20	psi	allowable external pressure for constrained pipe		
N	2		safety factor		
Rb	1		buoyancy reduction factor		
B'	0.24		soil elastic support factor		
E'	200	psi	modulus of soil reaction		
E	28000	psi	apparent modulus of elasticity		
DR	11		dimension ratio		
Hw	0	ft	groundwater height above pipe		
Н	4	ft	depth of cover		
е	2.71828		natural log based number		
4' Depth of	f Cover 2' Gr	oundwa	ter Wall Buckling		
P_{CA}	27.59	psi	allowable external pressure for constrained pipe		
N	2		safety factor		
Rb	0.835		buoyancy reduction factor		
B'	0.24		soil elastic support factor		
E'	200	psi	modulus of soil reaction		
E	28000	psi	apparent modulus of elasticity		
DR	11		dimension ratio		
Hw	2	ft	groundwater height above pipe		

4 ft

2.71828

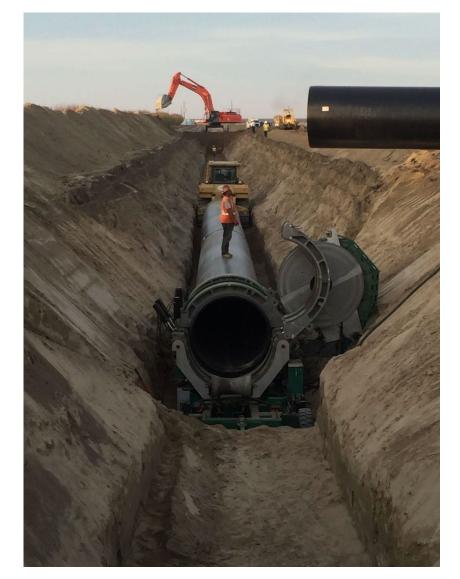
depth of cover

natural log based number



Embedment Requirements

Nominal Pipe Size	Max Particle Size
2 - 4"	1/2"
6 - 8"	3/4"
10 - 15"	1"
>= 16"	1.5"


ASTM D2321

Trench Width

ASTM D2321

Nominal Pipe Size	Trench Width
<3"	12"
3 - 24"	OD + 12"
>24"	OD + 24"

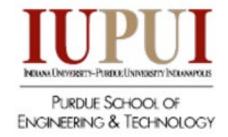
Open Cut – Lay In Method

Hydrocarbon Contamination

- 1. All Piping systems have potential contamination through joints, gaskets or wall
- 2. Hydrocarbons do not degrade polyethylene
- 3. Gross Contamination may require mechanical connections

Options in Addressing Gross Hydrocarbon Contamination?

- Surround pipe with clean soil of Class I or Class II type material
- Encase pipe in areas of active contamination
- Re-route pipe around contamination


Determination of Hydrocarbon Contamination Risk?

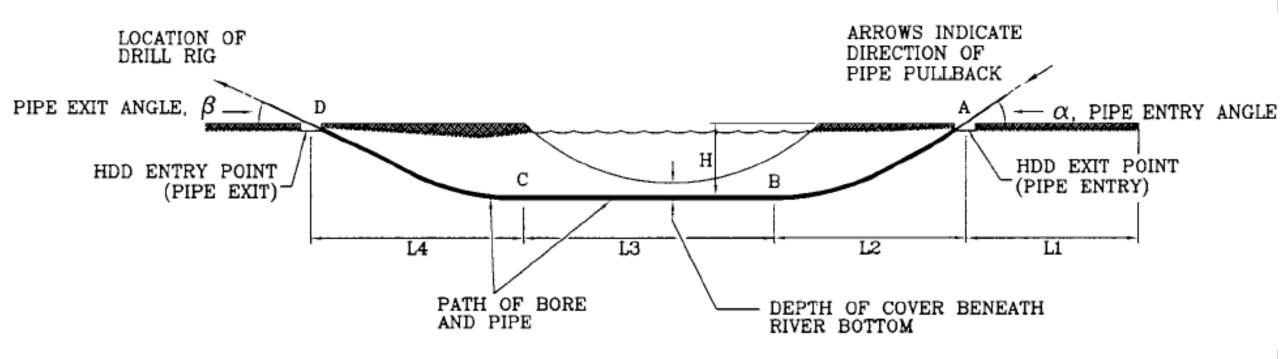
- BTEX Permeation Calculation

$$C_{pw_Flow} = \frac{M}{V} = \frac{P_m \times \pi \times OD \times L_c \times t}{q \times t} = \frac{4 \times f(C_{bulk}) \times OD \times L_c}{ID^2 \times v} = C_{pw} \times FlowFactor$$

$$C_{pw_Stagnation} = \frac{M}{V} = \frac{P_m \times \pi \times OD \times L_c \times t}{\frac{1}{4} \times \pi \times ID^2 \times L_T} = \frac{4 \times f(C_{bulk}) \times OD \times L_c \times t}{ID^2 \times L_T} = C_{pw} \times StagnationFactor$$

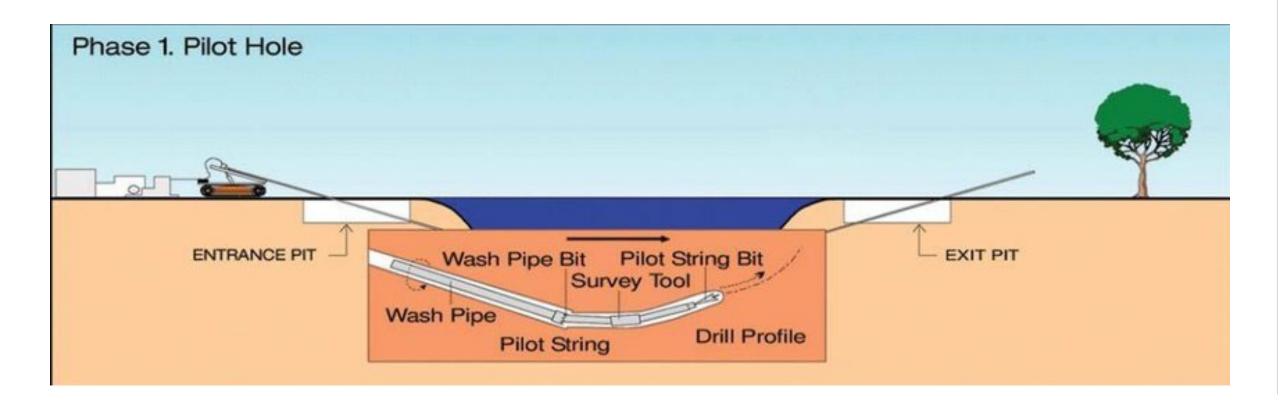
$$C_{pw_Thickness} = \frac{M}{V} = \gamma \times \frac{4 \times f(C_{bulk}) \times OD}{ID^2}$$

HDD

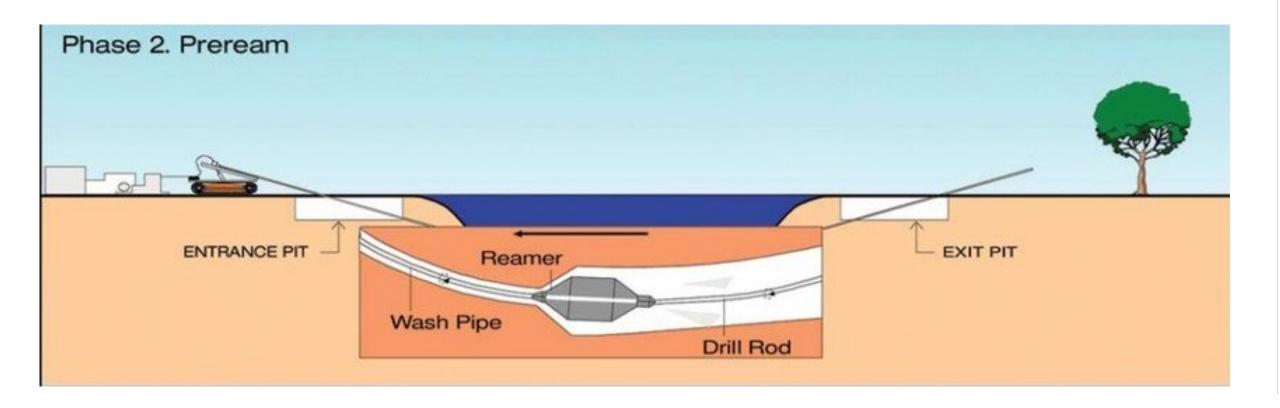


When To Drill?

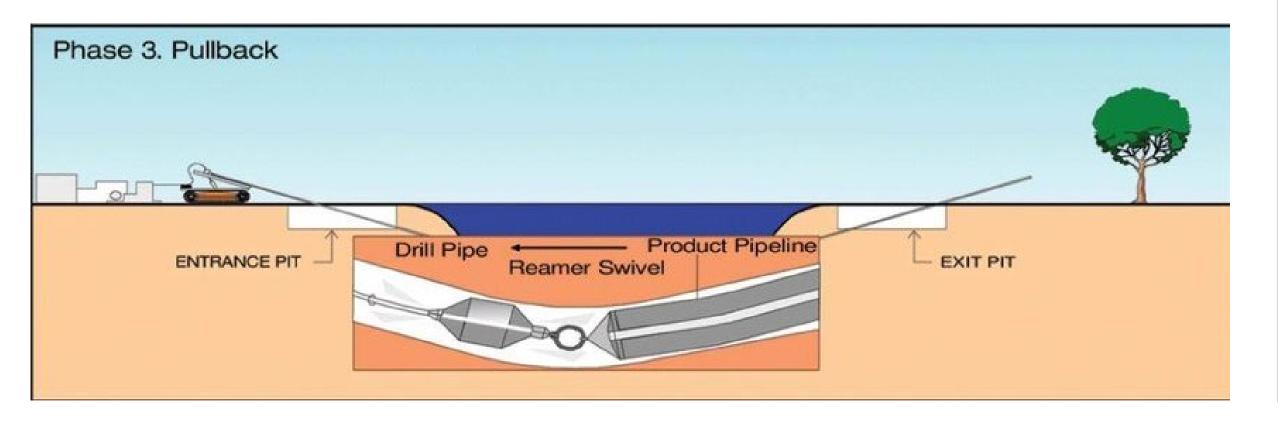
- Crossing rivers, lakes, roads, etc
- Where open cut is not feasible or cost effective
- Protecting environmentally sensitive areas



Installation Requirements



Step 1 – Pilot Hole



Step 2: Ream

Step 3: Pullback

Equipment

Drilling Rods

Equipment

Reamer

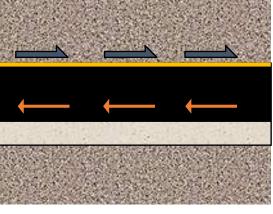
Equipment

Bentonite

Borepath Frictional Forces

Borehole Friction

- HDPE pipe is less dense than mud-slurry
 - Pipe floats to the top of the bore hole
- Frictional resistance when being pulled across top of the bore hole
- Capstan effect occurs when HDPE pipe is pulled around bends
 - Larger frictional forces



Slurry

Side View

Capstan Effect

= Pull Direction
= Plane of Friction

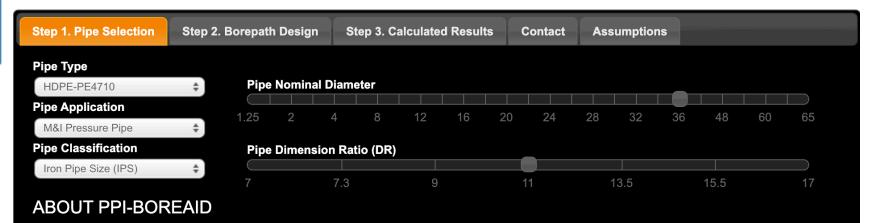
Safe Pull Force - HDD

Safe Pull Force

Safe pull force of HDPE pipe varies with:

- DR
- Time under tension

Outside diameter

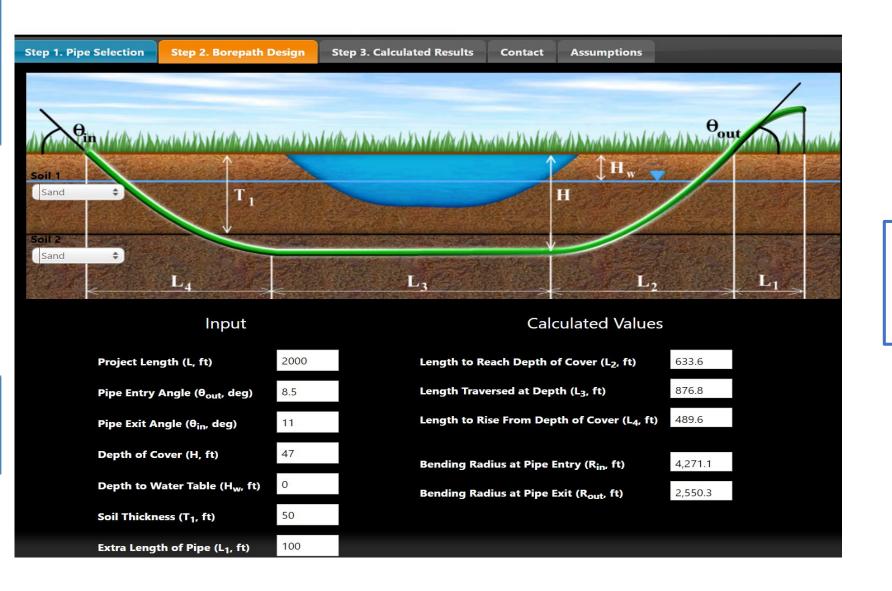

- Safe Pull Force = $\pi (OD)^2 f_Y f_T T_Y \left(\frac{1}{DR} \frac{1}{DR^2} \right)$
- Mechanical weak-link devices, such as breakaway swivels, are recommended
 - Assures the safe pull force of the PE pipe is never surpassed during installation
- Pipe rollers and ballasting reduces required pull force

Factor	Parameter	Recommended Value
f_{Y}	Tensile Yield Design Factor	0.40
f_T	Time Under Tension Design Factor	1.0 for up to 0.95 for up to 12 0.91 for up to 1 hour hours 24 hours
T_{Y}	Tensile Yield Strength of Pipe	3500 psi for PE4710 at 73°F

Calculator #5 PPI BoreAid

http://ppiboreaid.com

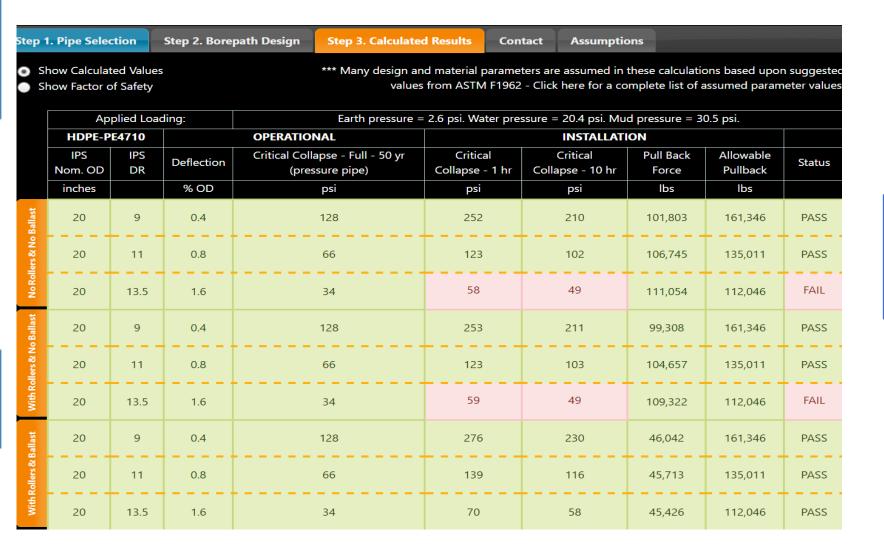
PPI-BoreAid is an online and computer desktop tool developed for and released by the Plastics Pipe Institute (PPI). These tools are developed to assist industry professionals in the evaluation of PE pipe for installation using a horizontal directional drill (HDD) by completing Handbook of PE Pipe, 2nd Edition Chapter 12 design calculations. PE pipe operation and installation calculations (deflection, unconstrained collapse, compressive wall stress, pull back force, and maximum tensile stress) are performed using a user defined bore path and soil strata. PPI-BoreAid employs the calculation methodology and framework developed in BOREAID™ - a comprehensive HDD design tool. BOREAID™ is capable of performing a full HDD design and deformation analysis using 3D surface topography, complex site stratigraphy, with full control over pipe and soil properties. It also contains as-built plots, the ability to export drill rod-by-rod plans, AutoCad import and export compatibility, a drill fluid estimator, a limiting bore pressure estimator, a project cost estimator and an equipment selector. For more information on BoreAid, visit www.boreaid.com.


PPI-BoreAid desktop computer application is a calculation tool that completes the same calculations as the online web based tool using a limited version of BOREAID™. The desktop computer tool is available, free of charge, by clicking the download button at the top of this page.

Step 1: Pipe Selection

Calculator #5 PPI BoreAid

http://ppiboreaid.com



Step 2: Borepath Design

Calculator #5 PPI BoreAid

http://ppiboreaid.com

Step 3: Calculated Results

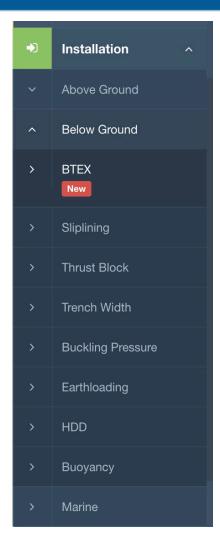
ALLIANCE FOR DEPOIDE 60

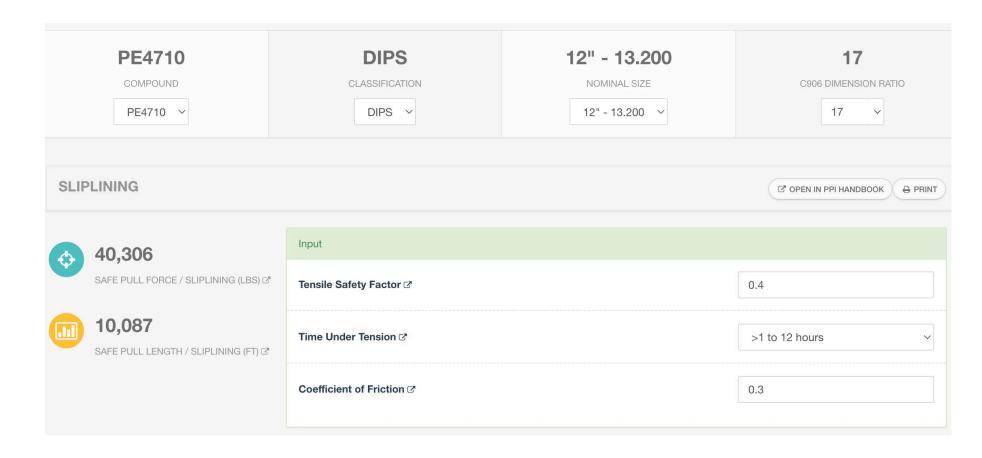
Sliplining

Key Points

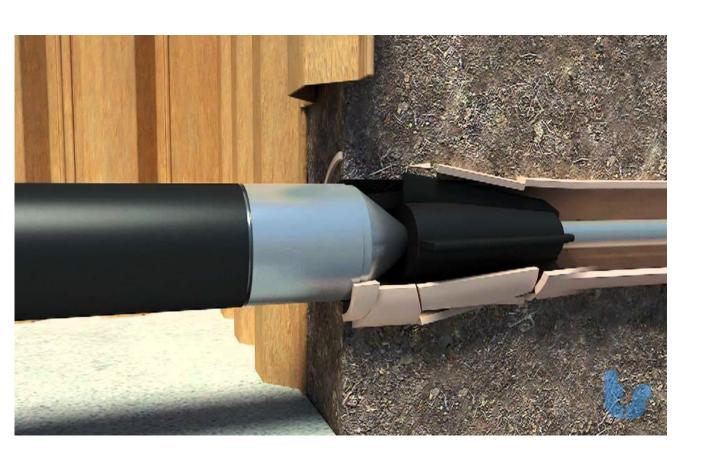
- Preparation is key to successful installation
 - Evaluate integrity of host pipe
- Limited by size of host pipe
 - Often obtain same flow after lining
- Limited ability to pull through bends
- Monitor pulling force
- Lubrication with bentonite or water reduces friction during pull-in
- ASTM F585

Pull or Push



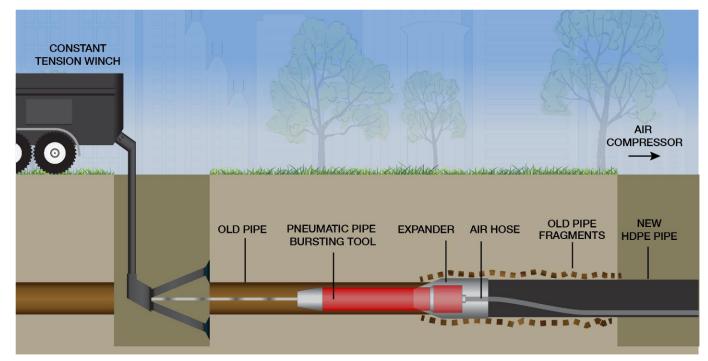


Calculator #6: Sliplining



Pipe Bursting

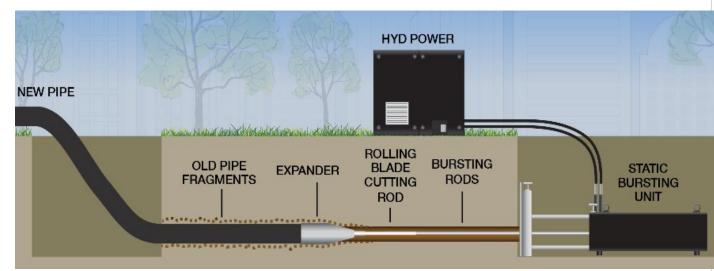
Pipe Bursting Definition


Three things are happening simultaneously

- (1) the existing pipe is being fractured or split
- (2) the soil is being expanded to receive the new pipe
- (3) the new pipe is being pulled into the place of the existing pipe.

Pneumatic Pipe Bursting

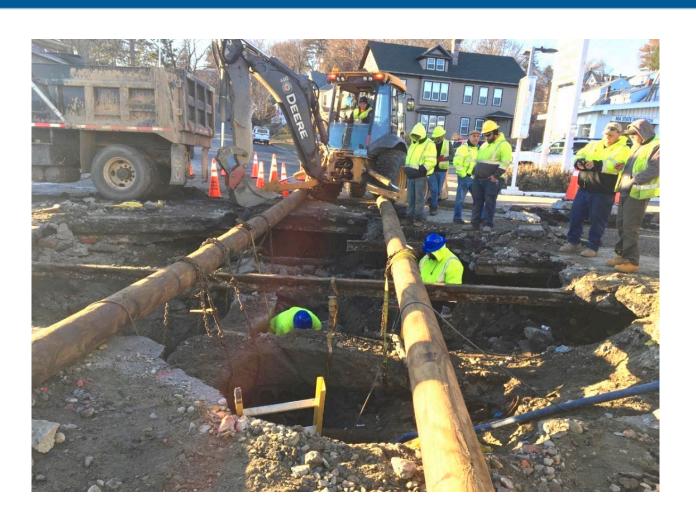
- utilizes a soil displacement hammer inserted into the existing pipe & is powered by compressed air.
- An expander head is fitted to the front or rear of the pneumatic hammer.
- the unit is connected to a constant tension winch that keeps the hammer in contact with the existing pipe



Static Pipe Bursting

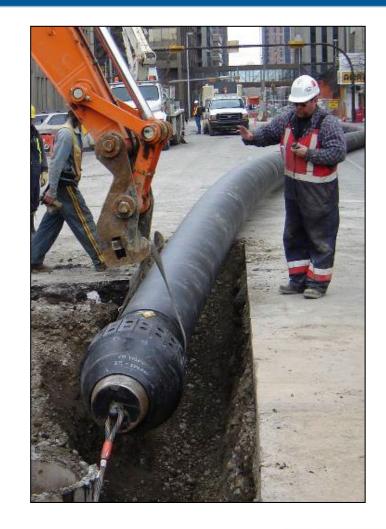
• Static pipe bursting inserts a rod, cable or chain into the existing pipe and applies a large pull force to an expander head as it is pulled through the existing pipe.

 The expander head transfers the horizontal pulling force into a radial force that breaks the existing pipe and temporarily displaces the soil to provide space for the new pipe



Pipe Bursting Benefits

Open Cut Replacement Costs


- Pavement saw-cutting
- Excavation
- Trucking spoil and dump fees
- Backfill and transport
- Compaction
- Concrete or asphalt repair
- Traffic control
- Bypass Pumping

Pipe Bursting Benefits

- Installs a new seamless pipe
- Ability to upsize
- Eliminates up to 85% of excavation
- Follows the path of the existing utility
- Less disturbance to traffic patterns
- Often more cost effective than open trench replacement
- Proven technology with 70,000,000 feet installed worldwide

Host Pipe

- Cast Iron
- Clay tile
- PVC
- Concrete
- Reinforced Concrete
- Asbestos Cement
- Ductile Iron
- Steel

Jobsite Setup

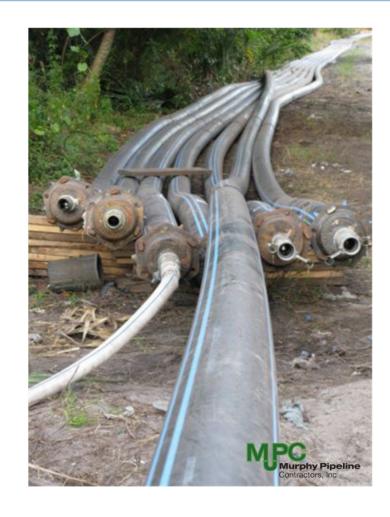
Pre-Chlorinated Sequence

Previous Week Pre-chlorinate

Send out samples

Pressure Test

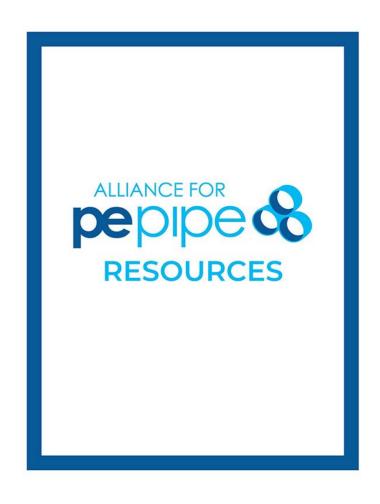
Wed AM Disconnect services


Excavate, expose

Burst

Wed PM Services reconnected

Backfill, water back on


or do temporary water

Resources

Alliance Standard Details

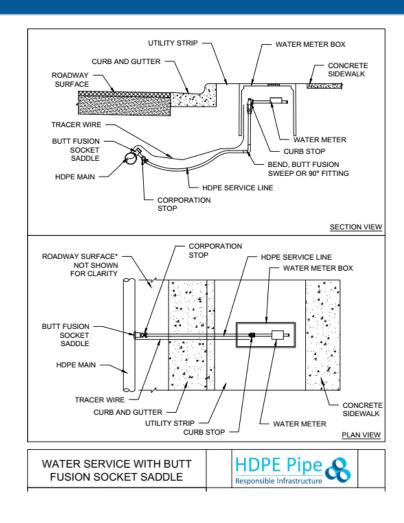
Connections

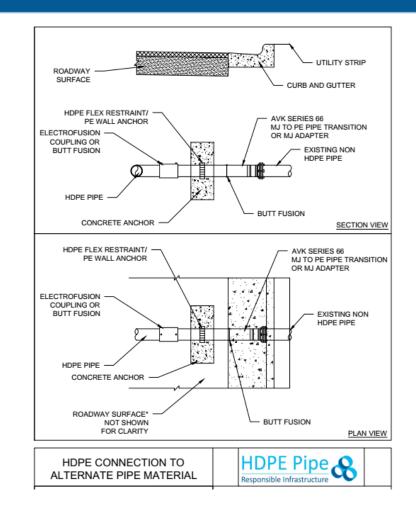
- Service saddle connections
 - Sidewall fusion
 - Electrofusion
 - Mechanical service saddle
- Valve connections
- Connections to non-HDPE pipe materials

Fire hydrants

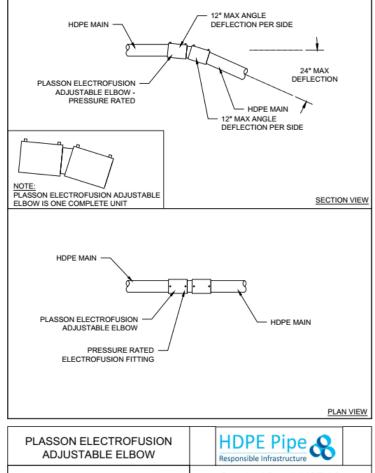
- Mechanical connections
- AVK fire hydrant

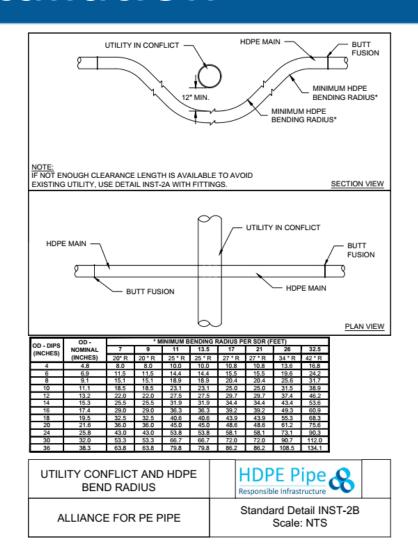
Manholes


- HDPE manholes
- Pre-fabricated HDPE pipe stub
- Pre-fabricated HDPE pipe gusset
- Pre-fabricated HDPE sleeve for force mains
- Electrofusion connections
- Butt fusion connections
- HDPE anchor connecting ring
- Concrete anti-flotation anchor
- External HDPE drop pipe
- Internal HDPE drop pipe
- HDPE pipe connection to non-HDPE manholes

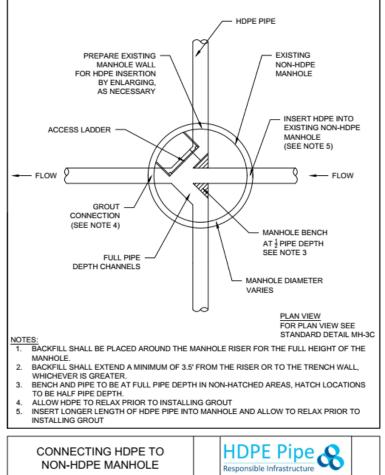

Installations

- Pipe bedding material
- Utility conflict adjustment
 - Electrofusion fittings
 - Adjustment through bend radius
- Electrofusion adjustable elbow

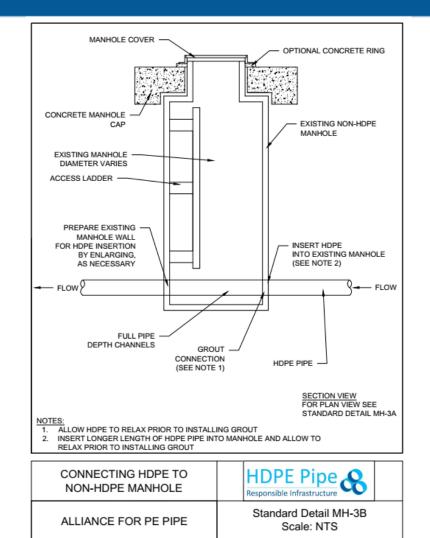

Standard Details - Connections



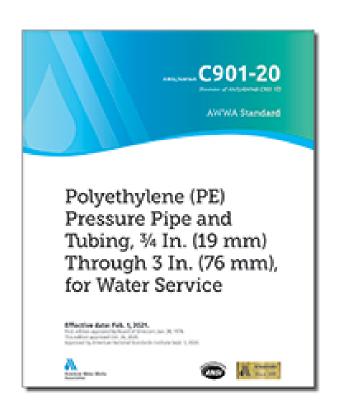
Standard Details - Installation

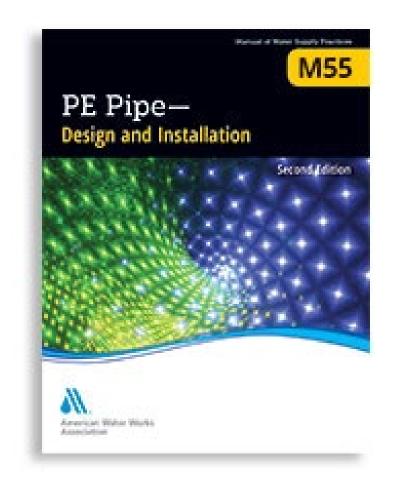


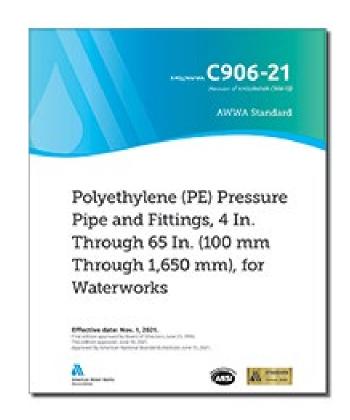
PLASSON ELECTROFUSION ADJUSTABLE ELBOW	HDPE Pipe Responsible Infrastructure
ALLIANCE FOR PE PIPE	Standard Detail INST-2C Scale: NTS



Standard Details - Manholes




CONNECTING HDPE TO NON-HDPE MANHOLE	HDPE Pipe Responsible Infrastructure
ALLIANCE FOR PE PIPE	Standard Detail MH-3A Scale: NTS



AWWA

CONTACTS

Questions

PDH

Project Assistance

Specification Writing

Engineers Package

Case Studies

Peter Dyke pdyke@pepipe.org

Alan Ambler aambler@pepipe.org

Aaron Davey adavey@pepipe.org

Dan Landy dlandy@pepipe.org

HDPE 301