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Copper Solubility & Corrosion Rate General
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Figure 2: Corrosion rate vs .pH.



Corrosion Control

Lead corrosion is more complex, but pH plays a role in lead carbonate
solubility, lead species, orthophosphate effectiveness and pipe scale
stability

Inorganic Carbonate, mg C/L
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Carbon Dioxide
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Carbonate System Components

m CarbonicAcid (H,CO,) or Carbon dioxide
(CO2)

Can donate two protons (a weak acid)

= Bicarbonate (HCOy)

Can donate or accept one proton (can be
either an acid or a base

m Carbonate (CO;%) —
Can accept two protons (a base)
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Open Systems

Henry’s Law: K, - 10-147 Matm-"

N

{H,CO;™} = Ky * Pcop

|

CO, Partial Pressure

{H,CO3*} = K,, * 10-C02

Pco, = 10PC02 = (0.0039 atm (25 C)

open system



Henry's law

" At a constant temperature, the amount of a given gas dissolved in
a given type and volume of liquid is directly proportional to the
partial pressure of that gas in equilibrium with that liquid.

p=Kku-C

ewhere:

ep is the partial pressure of the solute above the solution

ec is the concentration of the solute in the solution (in one of its many units)

-k is the Henry' s Law constant, which has units such as L--atm/mol or atm/(mole
fractlon) or Pa:-m /mol




Henry's Constant

Compound AH x 1073
Oxygen 1.45
Methane 1.54
Hydrogen sulfide 1.85
Carbon dioxide 2.07
Carbon tetrachloride 4.05
Trichloroethylene 3.41
Bezene 3.68

Chloroform 4.00
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Presentation Notes
Henry's law describes the tendency of a constituent to transfer from the liquid to the gas phase at equilibrium. The Henry's Law constant is the ratio of the equilibrium concentration of a particular contaminant in air to its concentration in water. Thus, a higher Henry's Law constant indicates a greater tendency of species to volatilize. High temperature and turbulence promotes gas transfer by reducing thickness of film at air-water interface. The efficiency of aeration depends almost entirely on the amount of surface contact between the air and water.


Henry’s Law - Different Forms

https://chemengineering.wikispaces.com/Henry%27s+Law

Table 1: Some forms of Henry's law and constants (gases in water at 298 K)I"!
equation: k‘H.p{' — pg_m k‘H.cp - = k-H.px - Pgn KH.cc = E—“]
Caq gas Laq Cgas
dimension: [LHHI" i Elt-]ﬂ] [ mﬂlmm ] [ELtIIl - leHmn] dimensionless
MOl s Leoln - atm MOl
05 769.23 1.3 E-3 4 259 E4 3.180 E-2
H- 1282.05 7.8 E-4 7.099 E4 1.907 E-2
COs 29.41 3.4 E-2 0.163 E4 0.8317
M2 1639.34 6.1 E-4 9.077 E4 1.492 E-2
He 27027 3.7 E-4 14.97 E4 9.051 E-3
Me 222222 45 E-4 12.30 E4 1.101 E-2
Ar 71428 1.4 E-3 3.955 E4 3.425 E-2
CO 105263 95 E-4 5.6208 E4 2.324 E-2

*C,, = Moles of gas per liter of solution

.Lsoln

= liters of solution

*Pgas = Partial pressure above the solution, in atmospheres of absolute pressure
*X,q = Mole fraction of gas in solution = moles of gas per mole of water
«atm = atmospheres of absolute pressure



Henry’s Law Constants
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CO, Removdl

20-30% > 99.9%

Spray Aerators: Nozzles

Spray Cascade/Tray Degasser/Diffuser Multi-Stage Bubble Diffuse Packed Tower
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Multi-Stage Bubble Diffuser
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MSBD
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Commercial Multi-Stage Air Stripper

MODEL DB86 DEEPBUBBLE
- i Multi-Stage Air Stripper

® HDPE VESSEL & MODULAR ALUMINUM FRAME
@ INSULATED NO-SWEAT TANK

@ HIGH-EFFICIENCY

® LOW MAINTENANCE

MNumber of Stages 8
Max Flow, gpm 2,200 PUMPED
1,500 GRAVITY
Max Air, scfm 2 000
Inlet & Outlet Size 2" to 12" exp flange
Vent 8“to 12"

Empty (shipping) Weight, Ib 3,
Operating Weight, Ib 16,
Blower, Filter, and Skid, Ib 1

25 (vessel only)
00 (vessel operating)
,000

m—h

NOTE: specifications subject to change without notice



Lowry Installations for CO,, Stripping

Partial List of Completed CO, Air Strippers

for pH Adjustment/Corrosion Control

Tucuman, Argenlina
Buenos Aires, Argentina
Mammoth Lakes, CA WTP 1
Mammoth Lakes, CA WTP 2
Mammoth Lakes, CA Well 1
St. Cloud, FL

Grand Forks, ND
Spanaway, WA Well 5
Ashland, ME

Ashford, CT

Moyie Springs, 1D

New Milford, CT
Westminster, MD

South Lake Tahoe, CA
Chico, CA

McKenzie Bridge, OR
Scoltsdale, AZ

Dayton, OR
Minden, NV
Killington, VT
Casline, ME
Harrison, ME
Lakeville, CT
Searsport, ME
Hollis, NH
Pine Cove, CA
Bow, NH
Sulton, MA
Hawthorne, CA
Coventry, RI
Mexico, ME
Reading, PA
Berry Creek, CA
Scollsdale, AZ

Idyllwild, CA
Manchester, ME
Swansea, MA
Divide, CO
Madawaska, ME
Poland Spring, ME
Nevada City, CA
Shrewsbury, MA
Hollis, ME

Bethel, ME
Tijeras, NM
Missoula, MT
Rochester, NH
Brownville, ME
Bonners Ferry, 1D
Mariposa, CA
Whitehorse, Yukon Territory, CN
Dixfield, ME

Oxford, ME

Dayton, OR
Rockville, CT
Shelton, CT
Farminglon, ME
Danbury, CT
Charlton, MA
Walertown, C1

South Paris, ME
Forest Ranch, CA
Rumford, ME
Steamboat Springs, CO
Fallen Leaf, CA
Bowdoinham, ME
Spanaway, WA Well 9
Hamilton, ON, CN
Stoninglon, CT
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Pilot Testing
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Pilot Testing
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pH, Standard Units
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Pilot Testing

Parameter Average -mm-m_ Removal %

pH (Raw)

pH (Stage 2)
pH(Post DB)
T (Raw)

T (Stage 2)
CO, (Raw)
CO, (Post DB)

6.3
3.2
17.2
17.4

121
1.5

6.2

7.8
15.0
16.9

76
0.7

6.5

8.5
18.1

18.0

152
3.8

99%
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Designh Procedure

Given a specific contaminant (Henry’s Constant)
and water temperature, the basic design
parameters for the process are:

e Air/Water (A/W) Ratio
e Depth of Bubble Rise
e Size of Bubbles

e Number of Stages

The stages in the process are what create an
efficiency far beyond what a single completely-
mixed vessel would produce. As the number of
stages increases, the process efficiency approaches
that of a theoretical plug-flow process. The two
processes are shown below in equations 1 and 2.

Completely-mixed stages in series:

(1)CIC, = [ 1/(1+kt)]™

Where:

C = concentration at steady state
C, = inlet concentration

k = the first-order rate constant for a single stage, time-1
(directly proportional to air intensity, Al)

t = detention time, volume/flow, of a single stage

m = number of stages in series

Plug-flow:

(2)

C,/C,=e
Where:

C, = concentration at timet
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In CARBON DIOXIDE (ppm)
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Design Procedure

k= slope of the line
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Removal of carbon dioxide through six stage system
At varying A:W ratios
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Size Appropriate Unit and Blower

Model DB32 Model DB63 Model DB84 Model DB86
Number of Stages
3 6 8 i
Max Flow, gpm 150 500 1,200 1,800
Max Air, scfm 500 600 1,350 2,000
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Thank you!
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