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– Preliminary design assessment 
– Results and Conclusions 

• Everett’s Next Steps 
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Clarification Background 

• Primary Solid/Liquid Separation at WTP 
• Primary Functions 

– Reduce filter solids loading 
– Improve filter performance, net production 
– Produce solids for disposal or processing 

• Function of Density (Water @ 1 g/cc) 
– Minerals: 2-3 g/cc (low detention time needed) 
– Organics: ≤1.1 g/cc (increased detention time) 
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Dissolved Air Flotation: Need? 

• Algae/Organics: Not WTP Operator’s Friend 
– Algaltoxins (from oxidation, cell lysis) 
– Off-tastes, malodors, color 
– Filter clogging organisms (particles & organics) 

• Algae/Organics Removal  
– Reservoir treatment difficulty & cost 

• Environmental issues, copper use 
• Organics and color may remain after treatment 
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Dissolved Air Flotation: Theory 
 DAF 

 Solid/liquid separation 
 Gas supersaturation  
 Bubble size from 20 - 100 µm 
 Floats material to water surface 

 Key Performance Criteria 
 Attraction between floc and 

dissolved gas 
 Electrostatic attraction 
 Entrapment within gas bubbles 
 Minimize detatchment  

 Minimize turbulence 
 Gentle, slow rise rate (1 cm/sec) 
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View of DAF surface showing a “milky” 
bubble cloud 



Dissolved Air Flotation: Application 
• Water Quality 

– Presence of seasonal or persistent algae & organics  
– Likely greater than 95% removal 
– Toxin release minimized 
– Low to Moderate Turbidity (<100 NTU) 
– High Color 

• Process Efficiency 
– Excellent removal of Natural Organic Matter 
– Excellent color removal 
– Excellent algae removal (typically >95% ) 

• Designs 
– Retrofit of poorly performing sedimentation basins 
– Add-on 
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DAF Design 
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DAF Design 

Flocculation Zone Reaction Zone Clarification Zone 
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DAF Design 
Bubble cloud thins out 

along length of basin 

Bubble Accumulation Zone Legend 
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DAF Design: Standard 
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DAF Design: High Rate 
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DAF Design: In-Filter 
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Clarification Technology Selection 
Elevated 
Turbidity 
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Selected DAF Projects 
WTP Flow 

(MGD) 
AECOM 
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290 MGD 
 

130 MGD 
 

100 MGD 
 

75 MGD 
 

40 MGD 
 

30 MGD 

D, CM 
 

D, CM 
 

P, D, CM 
 

D 
 

D 
 

P, D, CM 

In-filter DAF 
 
DAF, ozone, biofiltration 
 
106 cells/mL, 3 yr pilot 
DAF, ozone, biofiltration 
Conventional DAF 
 
Northern California 
 
High Rate DAF, 60% TOC rem. 
60% increase in filter loading 

Facility 

NYDEP, NY, NY 
 
Tianjin, China 
 
Winnipeg, MT, CAN 
 
Greenville, SC 
 
Zone 7 Water, CA 
 
Penticton, BC, CAN 

P: Piloting,   D: Design,   CM: Construction management 
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Everett: Background & Issues 
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• Everett WFP 
– Alum and Cat-T Poly 
– Three-stage flocculation 

 



Everett: Background & Issues 
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• Everett WFP 
– Alum and Cat-T Poly 
– Three-stage flocculation 
– Monomedia filtration       

(52” anthracite, air scour) 



Everett: Background & Issues 
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• Everett WFP 
– Alum and Cat-T Poly 
– Three-stage flocculation 
– Monomedia filtration         

(52” anthracite, air scour) 
– 120 MGD, 8 filters, 8 GPM/ft2 

 



Everett: Background & Issues 
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• Everett WFP 
• Water Quality Issues 

– Lake Chaplain 
– Spring and Fall ‘Event’ 
– ‘Event’ = Algae & zooplankton ‘bloom’ 
– ‘Bloom’ = Filter operations impairment 

 

Cyclops Daphnia 

Epischura Holopedium Bosmina Holopedium 



Everett: Background & Issues 
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• Everett WFP 
• Water Quality Issues 
• Who Is To Blame? 

– Algae: 3,000/mL, 0.0005mm 
– Zooplankton: 8,000/m3, 0.5-2.0mm 

(1,000x to 10,000x larger!) 
 

Cyclops Daphnia 

Epischura Holopedium Bosmina Holopedium 
Planktonus 
Maniachalus 



Everett: Background & Issues 
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• Everett WFP 
• Water Quality Issues 
• Who Is To Blame? 
• Operations Challenges 

– Increase filters from 8 to 
10 GPM/ft2? 

– Solve filter impairment 
issues? 

– Can these issues be fully 
characterized? 
 

Filter 
Maintenance 
Filter 
Maintenance 

Zooplankton 
Patrol 



Filter Performance and Raw Turbidity 
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Raw Water Algae & Zooplankton 
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Filter Performance and Zooplankton 
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Zooplankton Impact on UFRV (?) 

25 

U
FR

V 
(G

PM
/f

t2 /
ru

n)
 a

nd
 Z

oo
pl

an
kt

on
 (N

o.
) 

J     F     M   A   M    J     J      A    S    O   N    D     J      F    M   A   M    J     J     A    S     O    N    D   
Month (2009-2010) 

14,000 
 
 

12,000 
 
 

10,000 
 
 

8,000 
 
 

6,000 
 
 

4,000 
 
 

2,000 
 
 

0 

120 
 

 
100 

 
 
80 

 
 
60 

 
 
40 
 
 
20 

 
 
0 

Pl
an

t P
ro

du
ct

io
n 

 (M
G

D)
 



Zooplankton Impact on UFRV 
Data represent calculated percent relative monthly change 
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Increasingly better 
filter efficiency 
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Increasingly poor filter efficiency 
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Zooplankton Impact on UFRV 
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Zooplankton Impact on UFRV 
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Everett WFP: Results/Conclusions 
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Everett WFP: Results/Conclusions 

30 

FILTERS 

COAGULATION, 
FLOCCULATION 



Everett WFP: Results/Conclusions 
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Everett: Next Steps 

33 

• High Rate DAF Pilot Testing 
– Footprint minimization 
– Zooplankton removal 

• Filter Piloting Optimization 
– 10 GPM/ft2 

– Sustained UFRVs 
• Overall Solids Handling Improvements 

– Characterize solids production 
– End use of pond 
– Centrifuge, solids press 



Thank You 
  

Thank You 



Floating Your Algae Problems Away with High-Rate DAF 

Bob Bandarra,  City of Bellingham 
Joe Nattress, CH2M HILL 
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Presentation Outline 

 Why is additional treatment needed? 
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Why is additional treatment needed in Bellingham? 



Whatcom Falls WTP   

 24 MGD in-line filtration plant 
– Rapid mix followed by 6 dual media filters 
– Free chlorine disinfection 

 Raw water source- Lake Whatcom 
– Natural Lake  - 6.5 BGal capacity 
– Headwaters at Mt. Baker 
– Sometimes supplemented during summer 

• Middle Fork of Nooksack River 
– Lake is divided into three basins 
– Intake is in Basin 2 



Algae Levels Are Increasing  

Lake Whatcom Monitoring Project 2010/2011 Report  
Dr. Robin A. Matthews, February 24, 2012  
 



2009 Summer Algae Impacts 

 Elevated blue-green algae 
 Reduced filter capacity at Lake Whatcom WTP  
 Mandatory water restrictions 
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Gazillion Aphanothece (Filter Cloggers) 



What are the options available to mitigate algae? 
 Do nothing – and keep our fingers crossed its doesn’t happen again 

(unlikely) 
 Intensely manage the water supply and watershed  

– City currently does apply best practices in watershed where possible 
– City doesn’t own very much land in the watershed, hard to control 
– No certainty of success 

 Modify the raw water intake to pull from a deeper location in another part 
of the lake 
– High costs and disturbance to local population 
– No certainty of success – algae have been found at various depths in the Lake 

Whatcom water column 
 Add additional treatment 

– Add additional filters to existing WTP 
– Add pretreatment to existing WTP- must fit on existing plant site 

DAF is the Best Available Pretreatment Technology for 
Algae Removal 



What is DAF and how does it work? 



 Dissolved Air Flotation is a clarification/ pretreatment 
process 

 Uses dissolved air under pressure in water that is released 
as it passes through nozzles 
– Produces bubbles between 10 and 100 µm 

 Solids are “floated” to the top of the system 
 Clarified water flows out from the bottom 
 Best available technology for algae removal 

– Algae is less dense than water- “If it wants to float, let it float” 

What Is Dissolved Air Flotation (DAF) 



DAF Process Schematic 
 



 DAF first used in 1960s in Scandinavia for DW 
 Started use in US in 1980s, larger scale WTPs installed in 

1990s.   
– First few large plants in the Northeast 
– Largest plant with DAF – 200 mgd- New Jersey 
– Several plants larger than 50 mgd – Greenville SC, Newport 

News, VA, Winnipeg, MB, Waco, TX, others 
– NYC- Croton WTP – under construction – 290 mgd 

 Used in other water-related work 
– Backwash wastewater treatment 
– Pretreatment for Seawater Reverse Osmosis 
– Thickening for Waste Activated Sludge (WAS) 
– Industrial Oil/Water separation 
– Stormwater separation 

 

DAF Is A Proven Technology 



 Water source is a reservoir 
– Algae concerns 
– More stable turbidity 

 Low turbidity water – less than 10 NTU on 
average 

 Low to moderate TOC – less than 5 mg/L on 
average 

 Concerns about Giardia and Cryptosporidium 
– Can achieve greater than 2-log removal 

 Have limited land available for pretreatment 
 Need to thicken clarified solids 
 

 

When to use DAF? 



 Before 1990s, typical DAF loading rates were 8 
gpm/sf or less 

 Research and development  has pushed loading 
rates higher 
– Reduce footprint of the flotation zone 
– May require modification of the float zone area 

 High-rate DAF – 10 to 20 gpm/sf possible 
– Major vendors 

• ITT Water – ClariDAF ® 
• Infilco Degremont – AquaDAF ® 
• Enpure/Roberts Filter – Enflo-DAF® 

What is this “High-Rate DAF”?  



Pilot Testing Conditions 



Pilot Testing Conditions 

 Completed in August and September 2011 
 Typical Water Quality 

– Low turbidity, low alkalinity, low TOC 
– Neutral pH, no dissolved metals 
– Low algal counts except for late summer period 

 Operational conditions 
– Jar Testing – 10 ppm Alum, 0.2-0.4 ppm polymer 

• Similar to existing WTP 
– 5 minutes flocculation time 
– 10-12 % recycle rate 
– Hydraulic loading rates from 10 to 20 gpm/sf 
– Filter loading rates at 5,6, and 7 gpm/sf 

• Media design same as existing filters - 31 inches anthracite over 
11 inches sand 



Pilot Testing Schematic 
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DAF Pilot Test Equipment 
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Filtration Performance During Testing Exceeded Goals 

Performance 
Goal 

WTP 
Performance 
During Testing 

Highest DAF 
loading rates 



Algal Reduction in Pilot was Significant 
Highest DAF 
loading rates 



Algal surrogate monitoring showed mixed results 

Algae 
Removal 
(WWU) 

Chlorophyll 
Removal 
(WWU) 

Chlorophyll 
Removal 

(handheld 
fluorometer) 

Phycocyanin 
Removal  

(handheld 
fluorometer) 

Average 88% 86% 72% 48% 

Max.  95% 97% 84% 98% 

Min. 78% 40% 15% 14% 

 Chlorophyll A and Phycocyanin as algal presence and removal 
indicators 

 Chlorophyll A correlation was good; Phycocyanin was not useful 



TOC reduction across DAF process was variable 

Average SUVA in DAF effluent was 1.3 L/mg-m during testing 



DAF Reduced DBP Formation 

0 

10 

20 

30 

40 

50 

60 

70 
0 

da
ys

 

1 
da

y 

1 
da

y 

1 
da

y 

1 
da

y 

3 
da

y 

4 
da

ys
 

7 
da

y 

Treated WTP 
effluent 

DAF Treated Alabama and 
Woburn 

North and Elm 19th and 
McKenzie 

DAF Treated Marietta DAF Treated 

TT
H

M
s 

(p
pb

) 



Potential Site Layout 



Conclusions 



Conclusions 

 Coagulant dosages similar to in-line filtration plant were 
effective 

 Only 5 minutes flocculation required 
– Reduces footprint and cost 

 Pilot filter productivity was improved to 7,600 to 18,000 gal/sf 
– Full-scale plant during same period averaged 3,000 gal/sf 

 DAF loading rates operated effectively up to 20 gpm/sf 
– Design at 16 gpm/sf 

 DAF reduces the formation of TTHMs by 25% 
– Less chlorine demand with additional precursor removal 

 DAF is an effective process for the Lake Whatcom supply to 
reduce algae and mitigate risk for the City to meet its water 
demands in the future 



Questions? 
 

Bob Bandarra 
City of Bellingham 

bbandarra@cob.org 
360-778-7735 

 
Joe Nattress, P.E. 

CH2M HILL 
joe.nattress@ch2m.com 

215-640-9053 

mailto:bbandarra@cob.org�
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Emerging Industry Changes in 
Medium Pressure UV Disinfection 
Reactor Validation and Design: 
Sub 240nm Correction Factors 
 
 
 
 
 
 
2012 PNWS Annual Conference in Yakima, WA 
 
 



• Introduction 

• Issue Discussion 

• Industry Actions 

•Case Studies 

• Summary 

 

 

 

Presentation Outline 
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Introduction 
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•Why UV Disinfection? 
• Cryptosporidium inactivation 
• Giardia inactivation 
• Reduce free-chlorine contact (DBPs) 

•How is UV Implemented? 
• USEPA’s UV Disinfection Guidance Manual 
• UV reactor validation 

 

 

 

Introduction 
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• Guidance (UVDGM Chapter 5) 

 

 

 

•Action Spectra Correction Factor (CFAS) 
• 2006 UVDGM: Default of 5 percent (1.05) 
• RED is adjusted by dividing by the CFAS  
• Under-dosing if CFAS not applied 

Introduction (cont.) 
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Issue Discussion 
 
Under-Dosing if CFAS Not Applied 
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Low-UV Wavelength Absorbance 

Absorbance 
at 254 nm 

MS-2 has significant absorbance of <240 nm light 
Crypto as nearly zero absorbance of <240 nm light 

Adenovirus has massive absorbance <240 nm 4 
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Low-UV Wavelength Absorbance 
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Lamp Output vs. UVDGM Estimate 
Lamp Output Spectra Comparison 
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•Low-Wavelength (low-λ) Absorbance Not Corrected 

•Contributing Factors 
• Proprietary lamp output spectra (not measured) 
• Validation conditions allowing <240-nm λ 

•Compounding Factors 
• Spectra not always measured, just 254 nm 
• Secondary microorganism-specific issues 

•What is the Impact? 
• UVDGM CFAS = 1.05 
• Current estimates indicate CFAS ranges >1.20 

 

Summarizing Issue At Hand 
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Industry Actions 
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•UVDGM Development (Past) 
• Authors, experts, AWWA & utility representatives 
• 2000 to 2005, publication in 2006 

•Low-λ Issue Ad-Hoc Committee Meetings 
• May 2011: IOA/IUVA Congress (Paris, France) 
• Jun 2011: AWWA Annual (Washington, D.C.) 
• Sep 2011: IUVA Congress (Toronto, Ontario, Canada) 
• Nov 2011: AWWA WQTC (Phoenix, Arizona, USA) 

Related Industry Activities 
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Issue Analysis Flowchart 

Virus may 
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•Water Research Foundation (WaterRF) 4421 
• Developing CFAS by CFD Modeling 
• Is revalidation needed? 
• End of 2012 will bring first ‘community’ answers….. 

•WaterRF 4376 
• Microbial investigations (Cryptosporidium) 

 
• What about Giardia? 

 

Related Industry Activities 
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Case Study 
 
Facility 1 
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In-Filter 
Dissolved 
Air 
Flotation 

UV Disinfection 

Chlorine Disinfection 



• 20 MGD (24” MP Reactors) 
• 3-log Crypto. & 3-log Giardia Inactivation 
• Sub-40 mJ/cm2 Design UV dose 

Quartz Sleeve 
allowed low-λ light 
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Facility No. 1 



• 20 MGD (24” MP Reactors) 
• 3-log Crypto. & 3-log Giardia Inactivation 
• Sub-40 mJ/cm2 Design UV dose 
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Facility No. 1 



• 20 MGD (24” MP Reactors) 
• 3-log Crypto. & 3-log Giardia Inactivation 
• Sub-40 mJ/cm2 Design UV dose 

 

 

• Results of Initial Validation Assessment 
– Low λs were allowed during validation 
– Impact on the Crypto inactivation credit: Yes 
– Impact on Giardia inactivation credit: ? 
– Needs detailed assessment 

This may be the path that causes the 
most risk for UV system designs. It is 
unclear how much of a risk it is at this 

point, but detailed analysis of the 
system is needed. 
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Case Study 
 
Facility 2 
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Existing Ozone 
and Chlorine 
Contact 
(Now) 

Ozone and 
UV Reactors 
& Chlorine 
Contact 
(Construction) 



• 450 MGD (48” MP Reactors) 
• 3-log Crypto. inactivation (ozonated, unfiltered) 
• Sub-40 mJ/cm2 Design UV dose 

Sensor Response 

20 

Facility No. 2 



Facility No. 2 
• 450 MGD (48” MP Reactors) 
• 3-log Crypto. inactivation (ozonated, unfiltered) 
• Sub-40 mJ/cm2 Design UV dose 

Synthetic quartz sleeve 
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• 450 MGD (48” MP Reactors) 
• 3-log Crypto. inactivation (ozonated, unfiltered) 
• Sub-40 mJ/cm2 Design UV dose 

Water quality and absorber conditions allowed 
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Facility No. 2 

Raw 
Water 

Superhume 
(Low %T) 

Superhume 
(High %T) 



• Reactor Validation for Facility No. 2 
– Only looking at one water quality 
– Only looking at one superhume condition 

• Compensating for anomalies 
– Organism absorbance spectra 
– Lamp output, sleeve absorbance 
– Natural and added (superhume) organics 
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Facility No. 2 Example Calculation 
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1. Light Absorbance <300nm 
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MS-2 absorbs 
more light here 

Crypto absorbs more light 
here (already compensated 
for in the UVDGM?) 
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1. Light Absorbance <300nm 
2. % difference, 10-nm band summation 
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NOTE: Calculations incorporated 
lamp output, quartz sleeve 
transmittance, water absorbance, 
and superhume absorbance. 

Not addressed in validation (?) 
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1. Light Absorbance <300nm 
2. % difference, 10-nm band summation 
3. Calculate “next-to-lamp” percent differences 
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~42 % sum 
difference 
<240 nm 

Sum total 
area = 100% 
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1. Light Absorbance <300nm 
2. % difference, 10-nm band summation 
3. Calculate “next-to-lamp” percent differences 
4. Calculate normalized percent differences 

across entire 210 to 300 nm range 



• Validation Condition Summary 
– MS-2 used for Cryptosporidium credit 
– Water quality and equipment allowed low-λ light 
– Expanded CFD needed for thorough analysis 

• Calculation Summary 
– Lamp output (power/wavelength) 
– Organism absorbance (above) 
– Organism absorbance ratio 

• Each wavelength 
• Summed ratios from 217 through 300 nm 
• Relative values for each wavelength compared to entire range 

• Initial Results 
– Approximately 40% inactivation error next to the lamp 
– Detailed evaluation required (all conditions, distances from lamp) 
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Facility No. 2 Example Calculation 



Facility No. 2 
• 1,700 MLD (48” MP Reactors) 
• 3-log Crypto. inactivation (ozonated, unfiltered) 
• Sub-40 mJ/cm2 Design UV dose 
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This may be the path that causes the 
most risk for UV system designs. It is 
unclear how much of a risk it is at this 

point, but detailed analysis of the 
system is needed. 



Summary 
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• Medium pressure UV Installations 
• Reassessment required 
• Possible validation inaccuracies for Crypto. & Giardia 
• Surrogate organism vs Cryptosporidium 

• Revised safety factor 
• Possibly increased by ≥10-20%  
• Depends on low-λ validation conditions 

• Industry Research Continuing 
• AECOM involvement 
• Updates expected toward end of 2012 

• Facility Impacts? 
• Do nothing 
• Increased O&M? (power, lamps) 
• Increased Capital? (reactors, etc.) 

 

Summary of Issues 
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Summary of Possible Approach 
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Thank You! 



ETV testing of a Biological Arsenic, Iron, Manganese and 
Ammonia Removal Technology 
PNWS AWWA 



Overview  

• System Overview 
• Examples 
• ETV Requirements 
• Initial Water Quality 

Data 
 

Figure 1:  Photo of biologicalwater treatment system 

 



Iron and Manganese Treatment Alternatives 

Alternatives 
 Aeration, precipitation, filtration 
  Chlorination, precipitation, filtration 
  Ozone, precipitation, filtration 
  Potassium permanganate, precipitation, filtration 
  Biological Removal 
  Ion exchange (zeolite) softening 
  Manganese-greensand filtration 
  Oxide coated sand filtration 
  Pyrolusite media filtration 
  Membrane filtration 
  Lime softening  

 

Removal Mechanisms 
1. Precipitation 
2. Ion Exchange 
3. Adsorption 
4. Biological Removal 
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Oxidation/Precipitation/Filtration 



Chemical & Cost Savings using Biological Filtration of Waters 
with High Iron Concentrations 

Heda Oya/ 
Pottuvil, Sri Lanka 

Jefferson PUD, WA 

Raw Water Iron 
Concentration 

11 to 21 mg/L 7.5 mg/L 

Capacity 1,500 gpm 1,500 gpm 

Annual Chemical Costs 

Raw Water Cl2 & KMnO4 $76,000/Yr $109,000/Yr 

Biological System 
Chemical Cost (Chlorine 
Post Feed) 

$23,000/Yr $21,000/Yr 

Savings $53,000/Yr $88,000/Yr 



 Iron, Manganese, Nitrate and Arsenic Removal 

Woodland, WA 
EPA ETV Testing Via NSF 
Collection and 

Distribution Pipe 

Treated  
Water 

Support Gravel 

Filter Media 

Air 

Special Oxidation  
Nozzle 

Raw 
Water 

Rotating Surface 
Washing Nozzles 

Treated 
Water 

Activated Raw Water  
by dissolved Oxygen 

 
 
 
 
Ferrous Iron  
↓(by Ferric Oxi –Hydroxide film)        
Ferric Hydroxide 

 
 
 
 

Nitrate Bacteria 
（Removes NH4-N） 

Iron Bacteria 
(Removes Mn) 

Contact Oxidation 
(Removes Iron) 

Biological 
Treatment 

Layer 

• Biological System 
– 40 mg/L Iron 
– 2 mg/L manganese 
– 1 mg/L ammonia 
– 50 ug/L arsenic 

• Deep Bed Filter System 
• Can backwash top part 

independent of 
remaining filter 

• Linear  Velocity 
– 400m/d    



Photographs of site in Japan 

Water Treatment Equipment 

Figure 3: Photo of  B Site  City Public Utilities, Japan 

Figure 2: Photo of A Site  Food Company , 
Japan 
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Japanese Biological Removal Systems 



Removal main mechanism 

Raw water 
Air 

Special oxidation 
nozzle 

Activated raw water with fully 
dissolved oxygen 

Support  
gravel 

Sand 

Contact oxidation 

Biological  treatment 

Fe removal 

Mn & NH3-N 
removal 

Treated water 

LV = 400 m/day  
      =6.82 gpm/ft2 

Leptothrix 
(Fe & Mn removal) 



Iron Bacterium 

leptothrix-sp400 leptothrix-sp200 

gallionella-sp400 leptothrix-sp400 



Removal main mechanism 
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WP Washing System 

 WP washing system: 

  W-washing：Short time normal back washing.  
                  (W = Whole) 

   P-washing：By jet stream of nozzles, surface 
water will be lightly cultivated without moving 
filter bed, and then drain out through upper 
channel. (P = Partial) 
 

 WP washing：Apply more P-washing and  
        minimize W-washing 
P-washing：Several times a day 
W-washing：Once a day 

 

 

Jet stream of nozzles trolley 
for P-washing            

P-washing            
By WP washing system, damages to  

filter bed with bacteria living in,  
can be minimized. 
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－WP washing (1)－ －ＷP washing (2)－ 
  

逆洗水

ＷＰ洗浄システム－１

洗
浄
水

原水 表洗フロー

ノズルの移動による

ろ過層表面洗浄

100～200mm

部分洗浄

排水

逆洗水

ＷＰ洗浄システム－２

原水
逆洗フロー

逆洗浄全体洗浄

洗
浄
水

排水

Raw 
water 

Raw 
water 

    Moving 
 

Backwash 

Surface washing Back washing 

 
 

 
 

P-washing W-washing 

Backwash 

water water 

Drainage Drainage 
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WP Washing System 



_______________________________ 
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W-washing 

100～200mm 

W-washing System 
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_______________________________ 
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P-washing 

100～200mm 

O2 

O2 
O2 

O2 
O2 

O2 

O2 O2 

O2 

O2 

O2 

O2 

P-washing System 
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• pH – 6.0 to 6.5 
• Iron – 10-18 mg/L 
• Manganese 0.2 - 0.45 

mg/L 
• Arsenic – 30-40 µg/L 
• Ammonia – 0.2-0.4 

mg/L 

Bridge Road Well 

Candidate Site: Clark Public Utilities Bridge Road Well 

Water Quality 

Pilot Unit 



• Owner – Contracts with NSF for ETV 
Testing 

• NSF Carries out Testing for EPA 
• CH2M HILL Contracts with NSF for 

Third Party testing 

Organization 

ETV Process 

 



ETV Testin Multiple Parties 

• USEPA/NRMRL 
• NSF International 
• Scherger Associates 
• Owner 
• CH2M HILL 
• Clark Public Utilities 

• ETV Program Owner 
• ETV Program Manager 
• ETV Consultant 
• Equipment Supplier 
• Third Party Testing Agency 
• Host Utility 

ETV Agencies 



• Feed Water Flow Rate 
• Treated Water Quality 
• Length of Operating Cycle 
• Frequency of Backwash 
• Power Consumption 
• Maintenance Requirements 
• Required Level of Operator Attention 
• Spatial Requirements 
• Discharge Requirements 
• Waste Disposal 

• Ease of Operation 
• Safety 
• Susceptibility to Environmental 

Conditions 
• Impact of Operator Experience on 

Successful Operation 

Quantitative Factors  

ETV Testing – Evaluation 

Qualitative Factors 



• Temperature 
• Alkalinity 
• pH 
• Oxidation Reduction 

Potential 
• Turbidity 

• Arsenic (III) 
• Arsenic (V) 
• Total Iron 
• Dissolved Iron 
• Ammonia 
• Nitrate/Nitrite 
• Manganese 
• Total Kjeldahl Nitrogen 

Water Quality 

ETV Testing 

Inorganic Parameters 
• Hardness 
• True Color 
• DO 
• Total Organic Carbon (TOC) 
• Total Suspended Solidds (TSS) 
• Volatile Suspended Solids (VSS) 
• Color 
• Sulfate 
• Sulfide 
• Fluoride 
• Heterotrophic Plate Count (HPC) 
• Silica 
• Sodium 
• Potassium 

Other Parameters 



Nice Crane Work 

Bridge Road Well Installation 
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The Crate 



Assembly 

Bridge Road Well  
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Assembly Day 5 

Bridge Road Well 
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ETV Testing 

Milestone      Time Frame 
 
EPA Approval of the Test Plan   October 2011 
 
Equipment Installation    October 15, 2011 
 
Startup/Shakedown Testing    October 15 – 25, 2011 
 
Raw Water Characterization (Task A)              October 2011 
 
Filter Cultivation & Initial Test Runs (Task B) October 2011 to January 2012 
 
Verification Test (Task C)     
-Iron and Arsenic Removal    November 2011 – April 2012 
-Manganese and Ammonia    February 2012- July2012 
 
Complete Analytical Data and Summaries  September 2012 
 
Draft Final Report     September 2012 to December 2012 
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Initial Iron Removal 

Initial Bridge Road Well Results from 10/17/2011 – 5/1/2012 
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Initial Arsenic Removal 
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Initial Manganese Removal 
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Initial Ammonia Removal 
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Parameter Value 
Flow, gpm 4.7  
Loading Rate, gpm/sq ft 6.2 
Nozzle Pressure, psi 17 
P-Washing Frequency 8 hours 
W-Washing Frequency 36 hours 
pH 6.5 Inlet/7.2 outlet 
Temperature, C 12-14 
DO 6-7 mg/L in Treated Water 

Pilot Operating Conditions 



 
 
Lee Odell, PE 
Water Treatment Global Technology Lead 
CH2M HILL 
lee.odell@ch2m.com 
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Sunlight-Driven Generation and Activation 
of Free Chlorine in Drinking Water 

Disinfection: Looking at Chlorination 
Processes in Another Light 
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Meschke2 
 

1Department of Civil and Environmental Engineering 
2Department of Environmental and Occupational Health Sciences 

University of Washington 
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Modern-day disinfection practice 
Commonly-used disinfectants: 

•“Free” available chlorine (FAC) – Applied as Cl2(g) or NaOCl (HOCl 
is typically the active disinfectant in either case) 

•Chloramines, or “Combined” chlorine – Applied either as pre-
formed NH2Cl, or by mixing NH3 and HOCl 

•Chlorine dioxide – Applied as ClO2(g) 

•Ozone – Applied as O3(g) (no long-term residual) 

•Ultraviolet light – Applied via submerged UV lamps (no residual) 

Facility Type 
Percentage (%) of U.S. Treatment Facilities Using Each 

Disinfectant (Alone or in Combination with Others) 

HOCl NH2Cl O3 ClO2 UV 

Wastewater 75 - 0.2 - 21 

Drinking Water 97 31 4 6 2 

*Wastewater usage as of 2006 (WERF); Drinking water usage as of 2000 (EPA)  



I. Sunlight-Driven Chlorine 
Generation 



• Safety and security concerns of storing Cl2(g) 
make it increasingly unattractive for WTPs 

• NaOCl or CaOCl2 are relatively low cost 
alternatives, but decomposition and oxyhalide 
by-product formation can occur during 
storage,  

• On-site, electrolytic chlorine synthesis 
methods are quite energy intensive  

• A convenient, off-grid means of generating 
chlorine on-site could be very useful for 
improving sustainability of centralized and 
decentralized water treatment  

• Solar photosensitized activation of Cl– may 
provide an attractive option 

“Green” on-site Cl2 production? 



Aromatic ketone-halide photochemistry 
• Triplet states of certain aromatic ketones are capable of 

oxidizing halide ions by electron-transfer processes: 

• At high Cl- concentrations, formation of Cl2 occurs 
• 2 moles of O2

•- are produced for every 2 moles of Cl2•-: 
⇒ resulting H2O2 formation can limit Cl2 production 

 

Adapted from Loeff et al. (1993), Canonica et al. (2005) 



• Quinones 
• Anthraquinone-2-sulfonate 
  
 
 
 
• 1,4-Naphthoquinone 
  
 
 
 
• 1,4-Benzoquinone 
  

Examples of aromatic ketone photosensitizers 

Anthraquinones, in particular, 
characterized by substantial 

absorbance of UVA radiation ⇒ 
overlap with solar spectrum 
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Adapted by Rohde (2009) from ASTM Terrestrial Ref. Spectra 

Solar spectrum 



Experimental – Collimated solar simulator 

• Lamp output reflected at right angle with a coated 
dichroic mirror for IR attenuation ⇒ light passage limited 
to ~250-450 nm 

• Atmospheric attenuation filter used in all experiments; 
limits emission spectrum to 300-400 nm (simulation of 
direct sunlight at ocean surface) 

• Irradiance checked periodically by means of: 
• Spectradiometric measurement (Ocean Optics USB2000) 
• Chemical actinometry (typically using PNA/pyridine) 

• Newport-Oriel 450-
W Xe (O3-free) arc 
research lamp with 
2” collimated 
beam 

• Output ~1.3 “suns” 



• Samples irradiated in glass photochemical reactor 

 
 
 
 
 
 
 
 
 

• Acidic conditions, Cl2-HOCl equilibrium shifted to Cl2: 

 
• Cl2(g) purged with a stream of compressed air from 

photosensitizer solution and into alkaline trap solution 
(0.1 M NaOH), where Cl2 immediately hydrolyzes to HOCl 

Cl2 generation, transfer, and trapping 

3.0) (p H  Cl  HOCl OHCl hydrolysis22 =++↔+ +− K



Cont. irradiation w/ offline H2O2 quenching 

• AQ2S reactor solutions (within 51-mm diam. reactor) 
• After pre-determined irradiation intervals, solutions taken 

off-line for elimination of H2O2 by cerium oxide (CeO2) 
• H2O2-free solution returned to service 
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• Solutions of anthraquinone-2-
methylsulfonate 
(theoretically more 
photoactive than AQ2S): 
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• Anthraquinones capable of photochemically activating Cl- 
to free chlorine under simulated sunlight and at 
moderate acidity 

• Outputs directly scalable to surface area. For typical 
solar output, Cl2 yields would be ~4-5 x 10-11 mol/cm2/s 
with AQ2S. 

• For a 10 m2 reactor surface under natural sunlight, 
theoretical chlorine production rate should be ~1-2 g/hr. 

⇒ Treatment of up to 1000 L (264 gallons) of water per 
hour (daylight) w/ 2 mg/L free chlorine 

• Yields and system longevity may be extended through 
the use of optimally-designed anthraquinones. 

 

Key findings 



II. Sunlight-Driven Chlorine 
Activation 



Free chlorine in WTPs: 
• For disinfection with HOCl/OCl-, typical chlorine CTs 

insufficient to inactivate various highly chlorine-resistant 
pathogens (e.g., C. parvum, M. avium): 

 

Free chlorine CTs in water treatment 

Typical ranges of 
CT values required 
for various degrees 
of microorganism 
inactivation 
(pH 8, T = 25°C): 

G. lamblia 

??? 
Viruses 

B. subtilis 

M. avium 

C. parvum 

Practical CTs 



Pre-oxidation of chlorine-resistant pathogens 

Effect of ozone pre-treatment 
CT (20°C, pH 7) on the kinetics 
of secondary inactivation of C. 
parvum oocysts with free 
chlorine (20°C,pH 6) (Rennecker 
et al., 2000) 

Inactivation kinetics of B. subtilis spores during single step 
application of free chlorine and sequential application of 
free chlorine after ozone, chlorine dioxide and UV in 20mM 
phosphate buffer at pH (a) 5.6 and (b) 8.2 and at 25°C (Cho 
et al., 2006) 

Inactivation kinetics of (a) MS-2 phage and (b) B. subtilis 
spores during the single-step application of free chlorine 
and sequential application of free chlorine after UV and 
UV/H2O2 (pH 7, 20°C, UV dose: 42 mJ/cm2, [H2O2]0 = 0.6 mM, 
[HOCl]0 = 0.04-4 mg/L) (Cho et al., 2011) 

CT values for OH• inactivation of C. parvum 
using the photo/ferrioxalate system to 
generate OH• (Cho and Yoon, 2008) 

x 10-5 
0.95 



Coat composed  of various proteins 
(HOCl-reactive?) 
Cortex composed of peptidoglycan 
(HOCl-nonreactive) 
Highly impermeable inner membrane 
composed of lipids and proteins, 
integrity linked to cortex and germ 
cell wall 
Exosporium not relevant to B. subtilis 

Possible mechanism(s) of enhancement: 
• Pre-oxidation of spore coat, and/or spore cortex? 

B. subtilis spore inactivation 

HO• 

HOCl 

Adapted from Setlow (2007) 



• Substantial overlap of HOCl/OCl- spectra with solar spectrum 
• pH-dependent photolysis rates for solar illumination, due to 

differences in UV absorption spectra for HOCl and OCl- 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

HOCl + hν → HO• + Cl•   ∆[HO•]generated/∆[HOCl]photolyzed = 0.7 

OCl– + hν → O•– + Cl•  ∆[O•-]generated/∆[OCl-]photolyzed = 0.1 
 

Free available chorine photochemistry 
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Experimental approach 

• 10-mM phosphate-buffered reactor 
solutions irradiated under constant 
stirring, in 50-mL crystallization dishes 
covered with quartz lids 

• Solutions dosed with ~106 CFU/mL of 
ATCC 6633 spores and 1 µM of p-
chlorobenzoic acid (HO• probe) 

• Reactions initiated by dosing with FAC 
at t = 0, and sampled at intervals for 
residual FAC, spores, pCBA 
 



Inactivation by FAC + simulated sunlight: 
• Influence of HO• on inactivation rates during continuous 

irradiation at pH 8; 25° C 

B. subtilis spore inactivation - I 
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Inactivation by FAC + simulated sunlight: 
• Pre-irradiation to target residual at pH 8; 25° C, CFAC,0 = 6.5 mg/L 

 
 
 
 
 
 
 
 
 
 
 

• Lag phase shortened 
• Clear enhancement of post-irradation, post lag-phase 

inactivation rate 
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Inactivation by FAC + simulated sunlight: 
• Pre-irradiation to target residual at pH 8; 10 and 25° C 

B. subtilis spore inactivation - III 
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• Substantial 
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Possible approaches for implementation: 
• Sunlight/UVA - In situ solar pre-irradiation in (low Br-) reservoirs, 

application of low-energy LEDs with emission in UVA range 

• UVB/UVC - Dosage of FAC prior to an existing UV contactor 
installation (e.g., at SPU’s Cedar Water Treatment Facility, 
Marysville’s planned Edward Springs facility) 

Practical implementation 

• Portable – Solar illumination of 
Nalgene and/or low-density 
polyethylene bottles dosed with 
chlorine for backpacking, low-cost 
applications in decentralized 
treatment scenarios 

FAC 

Influent Effluent to 
clearwell 

[FAC]0 [FAC]target 

[FAC] 

UV contactor 



Key Findings 
• In situ generation of HO• during solar photolysis of FAC leads 

to substantial enhancement of inactivation rates for chlorine-
resistant B. subtilis spores 

• Enhancement is greatest for continuous photolysis during 
which HO• is generated throughout the process (until FAC is 
depleted) 

• However, marked enhancement can be achieved even for 
limited pre-irradiation intervals followed by dark chlorination 

• Improvements are greatest at higher pH, lower temperature 
(representative of actual DW conditions) 

Future Directions 
• Experiments in real waters (underway), under natural sunlight 
• Transmission electron microscopy; analysis of spore damange 
• Investigate inactivation of human pathogens: C. parvum, M. 

avium, Coxsackievirus B5 

Key Findings and Future Directions 
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Appendix 



Predominance of free chlorine species vs. pH 

pH > 3: HOCl/OCl- – non-volatile 
pH < 3: Cl2 – volatile, Cl3- - non-volatile 
 



Quantum yields of Cl2, H2O2 
• Cl2 quantum yield integrated over λ = 300-400 nm 

• 2 moles of O2
•- are produced 

for every 2 moles of Cl2•-: 
⇒ Cl2 quantum yield equal to 

H2O2 quantum yield under 
operating conditions 

This could limit Cl2 
production at high [H2O2] 

Quantum yield of Cl2 = 
0.073 mol/einstein 

Quantum yield of H2O2 = 0.099 
mol/einstein 



“Free available chlorine” in aqueous solution 

Key characteristics of free available chlorine (FAC): 
HOCl  OCl– + H+  Ka = 10-7.5 M (i.e., pKa = 7.5) at 25° C 

 

 

 

 

 

 

 
•HOCl is a much stronger oxidant than OCl- 
⇒ Inactivation rates often increase with decreasing pH 
during chlorination processes as a consequence 
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Inactivation by FAC alone (dark reactions): 
• pH 6, 7, 8; 25° C 
• Inactivation rates decrease with decreasing pH on account of 

shift in HOCl/OCl- equilibrium toward HOCl 

B. subtilis spore inactivation - I 
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Inactivation by FAC + simulated sunlight: 
• Continuous irradiation at pH 6, 7, 8; 25° C 
• Substantial (> 3-fold) enhancement in inactivation rates during 

continuous irradiation at pH 8; less enhancement at pH < 8 

B. subtilis spore inactivation - II 
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• Dark reactions 
accelerate at lower 
pH; light (HO•) rates 
maintained at 
similar levels 



New Focus On Research 



Research Programs 
 Focus Area Program (60% of Foundation research 

budget) identifies a limited number of broadly 
relevant subscriber issues and solves them with a 
targeted, multi‐year research response. 

 
 The Emerging Opportunities Program (20% of 

Foundation research budget) enables the 
 Foundation to respond quickly to emergent 

subscriber challenges and research ideas identified 
throughout the year.  

 
 The Tailored Collaboration Program (20% of 

Foundation research budget) enables the 
 Foundation to partner with utility subscribers on 

research that may be more limited or regional in 
impact.  

 

60% 20% 

20% 

Focus Area 
Tailored Collaboration 
Emerging Opportunities 

$3.84 million 
$1.28 million  

$1.28 million  

 



Utility Survey-Top Concerns 
1. Asset Management 
2. Utility Finance 
3. Distribution System 

Integrity 
4. Energy 

Management 
5. Water Resources 

 

• Chemicals of Emerging 
Concern 

• Water Efficiency 
• Disinfection By-Products 
• Customer Service 
• Communication 



Focus Area Program 
 The program is developed around research 

focus areas—discrete, high-priority problems to 
be solved, or opportunities to be realized, for 
Subscribers and the Water Community. Focus 
area solutions are achievable in a defined 
timeframe by completing a series of research 
projects.  



Focus Areas 

Hexavalent Chromium Water Utility Infrastructure 
NDMA and Nitrosamines Carcinogenic VOCs 
Energy Efficiency and 
Integrated Water-Energy 
Planning 

Water Utility Finance 

Contaminants of Emerging 
Concern (CECs) 

CECs and Risk 
Communication 

Water Demand Forecasts 
and Management 

Biofiltration 



Hexavalent Chromium: Filling Critical Knowledge 
Gaps to Inform Effective Rulemaking and Customer 

 Objective: By 2016, develop national occurrence 
data, evaluate treatment technologies, quantify 
compliance costs, and develop effective 
communication tools for utilities. 

 
 
 Year 1 project: Impact of Water Quality on 

Hexavalent Chromium Removal Efficiency and Cost 



Water Utility Infrastructure: Applying Risk Management 
Principles and Innovative Technologies to Effectively Manage 

Deteriorating Infrastructure 
 Objective: By 2017, provide utilities with tools and strategies to 

optimize the use of condition assessment and risk management in 
making infrastructure renewal decisions and the use of innovative 
renewal techniques. 

 
 
 Year 1 projects: Utility Risk Management Methodologies for Buried 

Assests with Improved Triple Bottom Line Understanding of Pipe 
Failures 

 
 Practical Condition Assessment and Failure Probability Analysis of 

Small Diameter Ductile Iron Pipe 
 



NDMA and Nitrosamines: Precursor Control, 
Treatment Practices, and Distribution System 
Operations to Achieve Regulatory Compliance 

 Objective: By 2016, provide resources to inform rulemakers 
and assist utility compliance with pending regulations by 
understanding the occurrence, precursor formation, 
treatment and control, and fate of nitrosamines in distribution 
systems. 

 
 
 Year 1 projects:  Investigating Coagulant Aid Alternatives to 

Poly DadMAC Polymers 
 
 Nitrosamine Occurrence Survey 



Carcinogenic VOCs Contaminant Group: Filling 
Critical Knowledge Gaps to Inform Meaningful 

Regulation 
 Objective: By 2015, delineate co-occurrence, assess 

effectiveness of analytical methods, and provide 
treatment solutions for carcinogenic VOCs that are 
relevant to EPA rulemaking. 

 
 
 
 Year 1 project: Evaluation of Henry’s Law Constant 

and Freundlich Adsorption Constant for VOC’s 
 



Water Utility Energy Efficiency and Integrated Water–Energy 
Planning: Developing Tools and Strategies 

 Objective: By 2016, provide effective strategies to reduce water utility 
energy consumption and cost; develop strategies for multi-sector, 
regional, integrated water–energy planning; and provide sound 
approaches for energy generation by water utilities and reduced 
water consumption by energy utilities. 

 
 
 
 Year 1 projects: Updated “Water and Wastewater Utilities: 

Characteristics and Energy Management Opportunities 
 
 Tool to Evaluate Financial, Environmental and Social Costs and 

Benefits of Renewable Energy Projects for Water Utilities  



Water Utility Finances: Best Practices for Setting Rates, 
Financing Capital Improvements, and Achieving Public 

Support — By 2015, develop utility communication 
 Objective: By 2015, develop utility communication tools for governing 

boards and customers, critically evaluate rate-setting strategies, tap 
financial success factors from outside the water industry, determine 
impacts of utility governance and ownership on financial 
sustainability, and develop decision support tools for infrastructure 
funding 

 
 
 
 Year 1 project: Rate Approval Process Communication Strategy and 

Toolkit for Legislative Bodies 



Contaminants of Emerging Concern in Drinking 
Water: Improved Cost–Benefit Analysis of 

Different Management Approaches 
 Objective: By 2016, develop robust approaches for managing 

CECs that consider the sources and variability of CECs; end 
uses of water; and the associated financial, environmental, 
and social costs/benefits. 

 
 
 
 
 Year 1 project: Watershed Sources of Contaminant of 

Emerging Concern and Relative Risk of (Human) Exposure 
 
 
 



Contaminant Risk Communication: Developing 
Core Messages and Engaging Critical 

Stakeholders 
  Objective: By 2014, develop core messages for water utilities to 

communicate the relative and often uncertain risk of contaminants to 
different audiences and initiate dialogue among key stakeholder 
groups to foster agreement on related issues and solutions. 

 
 
 
 Year 1 projects: Core Messages for Priority Contaminants of Emerging 

Concern 
 
 Broadening the National Dialogue on CECs and Public Health 
 



Water Demand: Improving the Accuracy 
of Forecasts and Management 

  Objective: By 2016, increase the accuracy of both 
short-term and long-term demand forecasting and 
quantify the interdependencies between changing 
use, rate structure, and utility financial stability. 

 
 
 
 Year 1 project: Evaluating the Effects of the Recent 

Economic Recession on Water Demand 



Biofiltration: Defining Benefits, Overcoming 
Unintended Consequences, and Developing Utility 

Guidance 
  Objective: By 2017, determine biofiltration effectiveness at 

removing CECs and other contaminants, define benefits and 
communicate to key stakeholders, develop strategies to 
mitigate unintended consequences of biofiltration, and 
provide utility guidance on optimizing biofiltration. 

 
 
 
 
 Year 1 project: Development of a Biofiltration Knowledge Base 



On-Line Proposal Submission 

http://images.search.yahoo.com/images/view;_ylt=A0PDoQ0qcqFPoygAmXyJzbkF;_ylu=X3oDMTBlMTQ4cGxyBHNlYwNzcgRzbGsDaW1n?back=http://images.search.yahoo.com/search/images?p=On-line&n=30&ei=utf-8&fr=yfp-t-701&tab=organic&ri=0&w=1050&h=1050&imgurl=cocktailmarketing.com.mx/blog/wp-content/uploads/2010/05/online.jpg&rurl=http://cocktailmarketing.com.mx/blog/2010/05/diversas-formas-de-marketing-online/&size=89+KB&name=Diversas+formas+de+Marketing+Online+:+Cocktail+Marketing+Blog&p=On-line&oid=5c465c45a6d2fc3f5c6afa307e14b188&fr2=&fr=yfp-t-701&tt=Diversas+formas+de+Marketing+Online+%3A+Cocktail+Marketing+Blog&b=0&ni=96&no=0&ts=&tab=organic&sigr=12h8nqc8o&sigb=132m751jg&sigi=1233di4l7&.crumb=8lygHyLAEn8�


Knowledge Portals 

 Extensive, topic-specific, online resource areas 
 Synthesized information 

 Executive Toolkits 

 Links to third-party resources 

 Subscriber discussion forums 

 Industry news feeds 
 

 Beneficial to subscribers and other audiences 
(professionals, media and general public) 

 FAQs 

 Presentations 

 Webcasts 

 Infographics 



Knowledge Portals 
 Asset Management 
 DBPs 
 Energy Management 
 Microbials 
 Utility Finance 

 

 Distribution System 
Integrity 

 Advanced Treatment 
 Customer Service 
 Water Resources 
 Desalination & Reuse 
 Water Efficiency 
 Chemicals of Emerging 

Concern 
 Climate Change 

 
 



Chemicals of 
Emerging Concern 

Disinfection By-
Products 

Alice Fulmer Dr. Djanette Khiari Frank Blaha 

Asset Management 

Dr. Grace Jang 

Microbials & 
Distribution 
System Integrity 

Dr. Hsiao-Wen Chen 

Advanced 
Treatment 

Jennifer Warner 

Water Resources 



Dr. Jian Zhang 

Distribution 
System Integrity 

Jonathan Cuppett 

Utility Finance 

Dr. Kenan Ozekin 

Climate Change 

Linda Reekie 

Customer Service & 
Energy Management 

Mary Smith 

Microbials 

Maureen Hodgins 

Water Efficiency 







Emerging Opportunities Program (EO) 

 The EO Program provides a defined mechanism for the Foundation to 
move quickly on time-critical research. The program also enables the 
Foundation to commit co-funding for subscriber-relevant research ideas 
developed by approved partner organizations and to fund selected, urgent 
internal projects as needed. 

 
  Time-sensitivity 
  Type of impact 
  Extent of issue 
  Identifiable research solution.  



EO Program 
 Trace Level Chromium-6 Occurrence and Analysis: Reviewing and 

Testing the State of the Science 
 

 Rates and Revenues: Water Utility Leadership Forum on Challenges 
of Meeting Revenue Gaps 
 

 Seismic Performance of Water Infrastructure 
 

 Lead and Copper Rule Targeted Unsolicited Research 
 

 Investigating the Presence of HAAs and THMs in Sodium 
Hypochlorite Feedstocks Used for Drinking Water Disinfection. 



Tailored Collaboration Program(TC) 

 The TC Program helps to fund projects that 
address issues important to subscribers on a 
regional or national level. Under this program 
utility subscriber or group of subscribers can 
obtain matching funds for a research idea that 
they have developed 



2012 Approved TC Projects 
  
 The Seasonal Patterns of NDMA Precursors in Water Sources and their 

Removal at Drinking Water Treatment Plants. (#4444) 
 
 Energy Recovery from Pressure Reducing Valve Stations Using In-Line 

Hydrokinetic Turbines. (#4447) 
 
 Optimizing Biofilter Conditions for Improved Manganese Removal and 

Retention. (#4448) 
 
 Seawater Desalination Energy Consumption Modeling. (#4446) 
 
 Sources, Fate and Treatment of Hexavalent Chromium. (#4449) 



2012 Pending TC Projects 
  
 Biological Treatment of Nitrates in Well Water 
 
 Pretreatment of Low Alkalinity Organic-Laden Surface 

Water Prior to a Coagulation-Ultrafiltration Membrane 
Process 

 
 Leveraging Data from Non-Destructive Examinations to 

Help Select Ferrous Water Mains for Renewal  
 
 Development of an Effective Asbestos Cement Distribution 

Pipe Management Strategy for Utilities  
 



New e-Communications Products 

Water Current (Water Research Update) 
 Foundation news and resources and important industry announcements 
 Open – subscribers and non-subscribers encouraged to subscribe 
 
 

Research on Tap (Bookshelf) 
 Research results and resources, webcasts, workshops, project updates 
 Subscribers, regulators and other partners 
 
 

News Splash (Subscriber Alerts) 
 Alert subscribers to breaking Foundation and industry news 
 Subscribers, regulators and other partners 



WATER CURRENT 



NEWS SPLASH 



RESEARCH ON TAP 



Drinking Water Research  

Published quarterly – 
mailed to staff in 
database 



Thank You 
 

John Albert 
Sr. Account Manager 
jalbert@waterrf.org 

303.734.3413 
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