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“Can I call you back? I'm with a piece of string.”



TABLE 2-1 -- Electromotive Force Serles of Metais!!!

Metal Volts?

Magnesium -2,37

Aluminum -1.66 31-1 The “Crown Jewels." The small aluminum globules were made by
Zinc -0,76 Hall in 1886; the largest one is the first commercial aluminum prﬁducedA
Iron -0.44

Tin -0.14

Lead -0.13

Hydrogen 0.00

Copper +0.34 to +0,52

Silver +0.80

Platinum +1.20

Gold +1.50 to +1.68

™ From Handbook of Ch and Phy 41st Edition,

b L3
@ 1959-1960,. Chemical Rubber Publishing Co., Page 1733,
Half-cell potential in solution of own salts, measured with
respect to hydrogen reference electrode.

TABLE 2-2 -- Practical Galvanic Series

Metal Volts™®
Commercially pure magnesium -1.75
Magnesium alloy (6% Al, 3% Zn,

0.15% Mn) -1.6
Zinc ~-1.1
Aluminum alloy (5% zinc) -1.05
Commercially pure aluminum -0.8

r._...........-

Mild steel (clean and shiny) ~0.5't0 ~0.8 .~
Mild steel (rusted) -0.2 to -0.5
Cast iron (not graphitized) -0.5
Lead -0.5
Mild steel in concrete -0.2
Copper, brass, bronze -0.2
High silicon cast iron -0.2
Mill scale on steel -0.2
Carbon, graphite, coke +0.3




GALVANIC SERIES OF METALS AND ALLOYS

MAGNESIUM
MAGNESIUM
ALLOYS

ZINC

ALUMINUM 5052,
3004, 3003, 1100, 6053
CADMIUM
ALUMINUM 2117,
2017, 2024

MILD STEEL (1018),
WROUGHT IRON
CAST IRON, LOW
ALLOY HIGH
STRENGTH STEEL
CHROME IRON
(ACTIVE)
STAINLESS STEEL,
430 SERIES (ACTIVE)
302, 303, 321, 347,
410,416, STAINLESS
STEEL (ACTIVE)

NI - RESIST

316, 317, STAINLESS
STEEL (ACTIVE)
CARPENTER 20CB-3
STAINLESS (ACTIVE)
ALUMINUM BRONZE
(CA 687)
HASTELLOY C
(ACTIVE) INCONEL
625 (ACTIVE)

TITANIUM (ACTIVE)
LEAD - TIN SOLDERS
LEAD

TIN

INCONEL 600
(ACTIVE)

NICKEL (ACTIVE)

60 NI-15 CR (ACTIVE)
80 NI-20 CR (ACTIVE)
HASTELLOY B
(ACTIVE)

BRASSES

COPPER (CAL02)
MANGANESE
BRONZE (CA 675),
TIN BRONZE (CA903,
905)

SILICONE BRONZE
NICKEL SILVER
COPPER - NICKEL
ALLOY 90-10
COPPER - NICKEL
ALLOY 806-20

430 STAINLESS
STEELL

NICKEL,
ALUMINUM,
BRONZE (CA 630,
632)

MONEL 400, K500
SH,VER SOLDER

NICKEL (PASSIVE)
60NI-15CR
(PASSIVE)

INCONEL 600
(PASSIVE)

80 NI- 20 CR
(PASSIVE)
CHROME IRON
(PASSIVE)

302, 303, 304, 321, 347,
STAINLESS STEEL
(PASSIVE)

316, 317, STAINLESS
STEEL (PASSIVE)
CARPENTER 20 CB-3
STAINLESS |
(PASSIVE), INCOLOY
825NICKEL -
MOLYBDEUM -
CHROMIUM - IRON
ALLOY (PASSIVE)
SILVER

TITANIUM (PASS.)
HASTELLOY C &
C276 (PASSIVE),
INCONIEL 625(PASS.)
GRAPHITE
ZIRCONIUM

GOLD

PLATINUM
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FIGURE 3-14 — Cross sectional view of a typical dry cetl.
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Jelly Jar Experiment
(normally use sea water,
potable water, various
soils, and Mr. Potato
Head)

Voltage
Current
Circuit Resistance

Figure 2-1 — Sketch showing flow of current between an
anode and a cathode in a corrosion cell.



FIGURE 316 — Representation of reactions encountered

when copper plates are connected by

steel rivets after sea

water exposure. Intense attack on small anodes (steel).

A—Steel rivets heavily corroded, B—
corrosion,

Copper, very slight

FIGURE 3-17 — Representation of reactions encountered
when steel plates are connected by copper rivets after sea
Water exposure (exposure duration identical to test shown in
Figure 16). Large anode {steel) and small cathode (Cu).
Resuits in negligible galvanic corrosion. A—Copper rivets,
very slight corrosion. B—Stee!, mild corrosion.
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Figure 16.8 Schematic showing a differential corrosion
cell created by replacement of a section of pipe.
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Figure 16.9 Schematic showing differential corrosion cell created by dis-
similar soils.
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Figure 16.11 Schematic showing differential corrosion cell created by
concrete encasement of pipe. Note that the indicated polarities of the po-
tentials are reversed.
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Figure 16.6 Schematic showing differential aeration cell developed
on a pipeline beneath a paved road. Arrows indicate direction of cur-
rent flow.
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Figure 4-3 -- Cathodic protection of coated pipeline
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FIGURE 6 — Typical structure-to-soil potential change with respect to time.
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FIGURE 2—Potential field around poorly insulated plipe-
line, lustrating the IR drop error inherent in structure/soil

potential measurements with cathodic protection current
applied.
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Figure 11.12 Stray current corrosion caused by DC transit systems.
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Electric Streetcars and Light
Ralls

 Electric streetcar trolleys and light rails
are once again popular, and their
resurgence has a large impact on the
city street — above and below ground.




Portland’s Electric Rail System

® 44 miles (70.8 km) of light rail
® 4 miles (6.4 km) of streetcar systems
® more planned
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Electric Rail Construction Impacts
on Underground Utilities

 Direct Physical Interferences

— Construction of electric rail tracks, catenary poles, and duct banks
obviously require utility relocations where there is direct physical
interference.

e Maintenance Access Encroachments

— Utilities located directly underneath or in close proximity to the
proposed tracks are inaccessible for routine maintenance, utility
operations, and future improvements.

o Stray Current Corrosion
— Many existing buried utilities are bare metal.
» concentric neutrals on power lines
 lead sheath communication cables
» steel fuel lines

» water lines that are typically cast gray and ductile iron with
copper service lines.




LRT Impacts on Water System

Crossing
Impacts
28%

Stray
Current
26%

Parallel

Impacts
Water Main Impacts based on Footage 46%0




Physical Interferences

Road widening or realigning

Grade changes

Changing external loading on existing facilities
Installing or modifying existing structures
Infringing on safety clearances

Installing track beds over buried facilities
Installing catenary poles or duct banks

Installing storm sewers, manholes, WQ facilities
Constructing new sidewalks

Installing streetlights and traffic signal poles
Relocating other utilities to accommodate construction




Access Constraints

Regional mass transit

Uninterruptible rail
service

Shutdowns during non-

revenue hours (betweer
2:30 am and 4:30 am, 7,
days a week

Trains every 7 minutes |

10 foot clearance from
overhead power

13 foot clearance from
moving trains
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Origin of Stray Current

Streetcar and DC light rall trains
are powered by electric motors.

Electric current flows from a
direct current substation to the
train through an overhead wire
and the current returns from the
train to the substation through
the rails.

The earth acts as a parallel
conductor to the rail and portion
of the current will return to the
substation through the soil.

The current returning through
the soil is referred to as “stray
current.”
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Effects of Stray Current

Stray currents cause electrolytic corrosion of both the
transit system and neighboring utilities.

The rail and rail fasteners corrode where stray
current leaves the rail and enters the soll.

Stray current flow in the earth is through both the soll
and metallic underground utilities such as pipes and
cables.

Corrosion will also occur where the current leaves
neighboring underground utility structures on its
return route to the transit system.




Percentage of current density
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Relative current density in soil as a function of distance from the current source, with the maximum current
density of interest 1-ft from the source.

Current density is reduced roughly %2 or more with each doubling of distance from the current source




Calculation of Stray Current Density

Sort bare pipe in extended field, long pipe in limited ground field,
long pipe in an extended field.




Risk assessment matrix

Selected Design

current separation

density, pipe-to-rail,
A/ ft? ft

Max
allowable stray
current, mA

Equivalent short
resistance, ohms

Long pipe, limited ground field

0.001 3 22 100 High / likely

Moderate /
unlikely

0.001 50 670 3 Low / unlikely

0.001 10 200 20

Short pipe, limited ground field — hemispherical current source field

0.001 3 15 100 High / likely

Moderate /

0.001 10 170 10 .
unlikely

0.001 50 4300 0.5 Low / unlikely

Short pipe, limited ground field — hemicylindrical current source field

0.5 ohms/1000 ft :
0.001 3 50 mA /10 ft ~ 50 ohms/10 ft Low / unlikely

0.1 ohms/1000 ft :
0.001 10 170 mA/10 ft 10 ohms/10 ft Low / unlikely

0.02 ohms/1000 ft :
0.001 850 mA/10 ft — 2 ohms/10 ft Low / unlikely




Encasement requirements for Mains Crossing the Lightrail

Tie & Ballast Area : I Embedded Track Area

TRAIN
10-0" (MIN POWER LINE 100" (MIN
. RADIAL CLR, TYP) . RADIALCLR, TYP) ,

1. ENCASE ALL MAINS THAT PER OSHA PER OSHA
CROSS THE TRACK SLAB. REGULATIONS REGULATIONS

2. ALL EQUIPMENT SAFETY
CLEARANCES AS PER OSHA
REGULATIONS.

3. RAILROAD STANDARDS
REQUIRE 5 FOOT EXTENSION
BEYOND 2:1 SLOPE

13" worker clearance
13' worker clearance from moving trains
from moving trains

O |

R

707 (T0"to150") [ (70"1015%0")

(14'-0" 70 22'-0") I
v

(28-0" T044-0")

MAX
EXCAVATION
SLOPE, TYP ENCASEMENT FOR 1:1 LOADING

ENCASEMENT RELATIVE TO 1.5:1 EXCAVATION SLOPE

(50" (50"
Railroad Railroad
Req't ENCASEMENT RELATIVE TO 2:1 EXCAVATION SLOPE Req't

NOT TO SCALE







Cased Pipe Being Installed
Downtown
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Casings With Reducers For
End Seals










Assemble

e

aboveground




Exothermic Welding




Exothermic Welding the track




Adapted to Manholes

Liner




Installation of Track Slab Liner
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Track Insulation Installation

Embedded track slab
construction, rail with
insulating boot held by
gauge bar and surrounded
by the slab reinforcing
steel.

The boot must be
protected during storage,
handling, positioning and
welding of the rall,
installing rebar, and
placing concrete.
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Even simple may
not be simple
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Traffic
continues




Typical Defects in Track Installation

« Embedded track insulated
with potting compound,
now degraded from
mechanical and

——environmental- damage.

€ Embedded track with
boot damage. Boot shows
surface raveling and an
open gap at a splice
connection.




PLATFORM GROUNDING
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Summary

* Relocate pipe to 10-ft separation between
track slab and metallic water lines.

e Case or sleeve crossings 10-ft beyond
track slab.

 Line track slab where right-of-way limits
relocation to less than 10-ft separation.
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